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Summary

The American Time Use Survey (ATUS) accurately measures hours worked on a single

day. We propose several estimators of elasticities of weekly labor supply in a linear regression

model, despite certain impossibility results due to the time specific feature of the ATUS. We

recommend the impute estimator, a simple modification of the standard two stage least squares

estimator, that imputes the dependent variable using daily subsamples, based on our careful

investigation of asymptotic and finite sample properties of the estimators under the potential

outcome framework. We apply the impute estimator to the ATUS and find substantially different

elasticity estimates from the Current Population Survey, especially for married women.
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1 Introduction

Empirical studies of labor supply depend greatly upon data on how much time people spend

working. Unfortunately, there is abundant evidence showing that weekly hours worked are poorly

measured in frequently used survey data sets such as the Current Population Survey (CPS) and

the Panel Study of Income Dynamics (PSID), and that the measurement error is nonclassical (e.g.,

Bound et al., 1989, 2001), which significantly biases the estimation of labor supply parameters

(Barrett and Hamermesh, 2019). Aiming to measure how people allocate their time on market

work and non-market activities more accurately, many countries have historical or ongoing time

use surveys.1 Time use surveys typically ask the respondents to record all their activities during

a prescribed period in the format of a detailed diary, hence provide much more accurate measure

of how individuals allocate their time in that period (e.g., Frazis and Stewart, 2012; Aguiar et al.,

2017).2

The major conceptual issue in deploying time use surveys to measure labor supply is that time

use surveys typically provide information about labor supply for only a few days of a week, but

on the contrary the CPS concerns an entire week. For example, the American Time Use Survey

(ATUS) records one single day for each respondent, while the Australian and the UK time use

surveys currently record two days. To the best of our knowledge, the only exception is the Dutch

Time Use Survey (DTUS),3 in which respondents record their activities for seven consecutive days.

If we are interested in weekly labor supply, then ideally we need to observe typical weekly hours

worked. The single day observed in the ATUS, albeit randomly sampled, creates a missing data

problem.4 In this paper, we will use the term coined by Barrett and Hamermesh (2019) and refer

to this problem as “time specificity”. Frazis and Stewart (2012) were the first to investigate the

consequences of time specificity problem. In particular, they gave a sufficient condition (eq. (1)

of Frazis and Stewart, 2012) for weekly statistics about which inference could be made using time

use survey data (e.g., mean of weekly hours).5 They further pointed out that weekly regression
1These countries include Australia, Canada, China, Japan, New Zealand, Pakistan, Russia, the USA and most

European countries.
2For a review of time use surveys used for studies in other subfields of economics, see Aguiar et al. (2012).
3In Dutch, it is called Het Tijdsbestedingsonderzoek, but in this paper we call it the DTUS for the consistency

with the ATUS.
4The hours worked on the non-diary days are missing completely at random and follow the “file-matching” pattern

(Little and Rubin, 2019).
5Frazis and Stewart (2012) also gave median and variance of weekly hours as counterexamples that do not satisfy
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functions can be estimated using time use survey data since they are conditional mean functions.6

To fix ideas, we will use the weekly labor supply as a leading example in the rest of this paper, and

will focus on the ATUS, in which respondents record their time use on one randomly chosen day.

The main contributions of this paper are twofold. Methodologically, we propose several intuitive

and easy-to-implement estimators that utilize the ATUS daily hours worked to estimate a weekly

labor supply equation and carefully investigate their properties. We recommend what we name

impute estimator based on its superior relative asymptotic efficiency and finite sample stability. In

terms of empirical estimates of weekly elasticities of labor supply, we apply our impute estimator to

a sample of American workers who participated in both the ATUS and the CPS, uncover multiple

interesting empirical findings, and compare these estimates with those obtained from the CPS.

Our recommended impute estimator has the following advantages. First, it is easy to implement

– it is a simple modification of the standard two stage least squares (2SLS) estimator, where the

same instrumental variables (IVs) are used to impute the (unobserved) dependent variable within

daily subsamples, as well as the (endogenous) independent variables with the entire sample. It

essentially matches similar individuals based on the exogenous IVs only, and uses observed hours

of matched individuals as imputed hours for those who were not surveyed by the ATUS on a

particular day.7 Second, it is consistent and asymptotically normal under the same conditions as if

the true weekly hours worked were observed.8 This paper is the first to systematically investigate

asymptotic as well as finite sample properties of various feasible estimators of linear regression

models using time use surveys. Our analysis is made easier and more transparent by employing the

potential outcome framework. Third, the impute estimator is also asymptotically more efficient

and numerically more stable in small samples, compared to the other estimators. These relative

merits of the impute estimator may make a difference in statistical inference, since time use surveys

are costly to conduct and have much smaller sample sizes than traditional surveys.

such condition.
6The scope of Frazis and Stewart (2012)’s paper is wider than ours – it covers both cases where the hours worked

are the dependent variable and the independent variable, as well as other issues such as multiple activities, multiple
diary days and multiple members in a household, etc.

7Aguiar et al. (2017)’s “synthetic time diary” approach shares similar spirits. They used both endogenous and
exogenous covariates to match, but we prove that the consistency of all the estimators demands the matching to be
based only on the exogenous IVs.

8If the true weekly hours worked were observed and the regressors (e.g., wage) are endogenous, then the usual
2SLS estimator only requires valid and relevant IVs to be available. As becomes clear below, the argument generalizes
trivially to other time use surveys for more than one day.
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In addition to the theory, we utilize the DTUS as a valuable benchmark since it contains accurate

diary hours for seven consecutive days. We randomly draw one single day for each individual to

imitate the ATUS. This artificial data set permits direct comparison among our proposed estimators

and the usual 2SLS estimator, which is infeasible for the ATUS. Through this unique approach,

we unambiguously demonstrate the superiority of our impute estimator.

Empirically, we find that the ATUS yields smaller own wage elasticities than the CPS across

the board, but the gaps vary among gender and marital groups. Moreover, the ATUS indicates

smaller spouse (cross) earning elasticity than the CPS for married women, but larger for married

men. Furthermore, the ATUS exhibits weaker elasticity with respect to the number of older kids

than the CPS for married women, even though the two surveys result in almost the same elasticity

estimates with respect to the number of younger kids.

Empirical studies have found nonclassical measurement errors in many dependent variables

(Duncan and Hill, 1985; Bound et al., 2001) including labor supply. But in theoretical econometrics

literature, nonclassical measurement errors in dependent variables have drawn far less attention

than independent variables (e.g., Hu and Schennach, 2008; Chen et al., 2005; Hu and Sasaki, 2015,

2017). A notable exception is Abrevaya and Hausman (1999). While our impute estimator naturally

accommodates endogenous independent variables (e.g., wage), it is unclear, however, whether and

how Abrevaya and Hausman (1999)’s estimator could be generalized to this case.

Contemplative readers may wonder: what is the significance of weekly labor supply? Why not

estimate monthly, quarterly, or yearly labor supply? The most obvious reason is that the CPS

records weekly hours,9 and we need to aggregate the daily information in the ATUS in order to

compare with the CPS. But more importantly, once we bridge the gap between daily hours and

weekly hours, then going from weekly hours to longer time frame follows exactly the same logic.

For activities recorded in the ATUS other than working (e.g., Aguiar and Hurst, 2007; Guryan

et al., 2008; Aguiar et al., 2017), time specificity problem remains. Time specificity problem also

presents itself outside time use surveys, such as recalled food expenditure data (Ahmed et al., 2006;

Sousa, 2014; Brzozowski et al., 2017) versus the diary system used in the Expenditure and Food
9The CPS asks the respondents how many hours he/she usually works per week, and how many hours he/she

actually worked the week before, both for their main jobs and other jobs. In our empirical studies using CPS data,
we used the number of hours per week that the respondents usually work.
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Survey (EFS) in the UK.10

The rest of the paper is organized as follows. Section 2 gives more information about time use

surveys and traditional surveys. In Section 3, we first state two impossibility results regarding the

true weekly hours. Then we focus on the estimation of weekly labor supply parameters. We propose

several intuitive estimators and recommend the impute estimator based on its superior asymptotic

properties. Section 4 demonstrates its superior finite sample properties via simulations using the

DTUS as the benchmark. Section 5 applies our impute estimator to the ATUS and compares it

with the labor supply elasticity estimates produced by the CPS for the same respondents. Section 6

states a few of our comments on the design of time use surveys. Section 7 concludes.

The Supplementary Appendices collect the proofs, additional simulations, additional theoretical

and empirical results, as well as various robustness checks of our empirical studies.

2 Time Use Surveys

The ATUS randomly draws a subsample of the respondents who just completed their participation

in the CPS within the past two to five months.11 On a randomly chosen day (interview day),12

the respondents are asked to fill up a diary detailing all their activities minute-by-minute on the

previous day (diary day). Adding all the time spent on working by each respondent yields his/her

ATUS hours worked for the diary day. Since the respondents of the ATUS had already participated

in the CPS, all the data collected by the ATUS and the CPS about them are available for analysis,

including demographics and income.13

The ATUS has some distinct features that set it apart from commonly used surveys like the

CPS. First, the respondents of the ATUS record their activities for only one day (diary day),

as opposed to weeks or months. The diary day is completely randomly chosen, with weekends

having higher probabilities than weekdays.14 Second, the ATUS imposes a 24-hour limit on the
10The EFS became known as the Living Cost and Food Survey from January 2008.
11For the workers who satisfy the criterion for our empirical analysis in Section 5, the number of those who

participate in the ATUS account for roughly 1/50 of all the respondents in the CPS.
12ATUS User’s Guide (2020, Section 3.5) states that “The designated persons are then randomly assigned a day of

the week about which to report”.
13For a more detailed description of the ATUS, see Hamermesh et al. (2005).
14ATUS User’s Guide (2020, Section 3.5) states that to “ensure good measures of time spent on weekdays and

weekend days, …10 percent of the sample is allocated to each weekday, and 25 percent of the sample is allocated to
each weekend day”. Weekends are oversampled since they are more informative about people’s activities other than
work.
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time allocated to all recorded activities. These two features are likely to make the ATUS hours

a much more accurate measure of the hours worked on a single day. Throughout this paper, we

assume that the observed daily hours worked in the ATUS are the true hours worked for the diary

day, only to simplify our analysis. We acknowledge that this assumption is almost certainly wrong,

and that the incidence and the size of the measurement error in the ATUS daily hours should be

carefully examined for any serious empirical research.15

On the contrary, the CPS records weekly hours, by asking either how many hours the respon-

dents usually work per week or how many hours they actually worked in the previous week. While

probably less accurate than the ATUS hours, the CPS hours concern a longer time period.

In order to quantify and rectify the consequences of error-ridden hours in the CPS using the

more accurate ATUS hours, we have to understand and tackle this time specificity of the two data

sources. This time specificity is the crux of this paper. To focus on the consequences of time

specificity, we will only include the individuals who participated in both the CPS and the ATUS

into our sample for empirical analysis, so that no differences in estimates or efficiency may result

from the differences in samples.16

Such time specificity of hours between time use surveys and commonly used surveys is not

unique to the US, presumably because of high costs of conducting time use surveys. In fact, to the

best of our knowledge, the only country that has ongoing time use survey that records activities

for an entire week is the Netherlands.17 The DTUS has been carried out since 1975 and has been

published every five years. In the week long diary, the participants record their main activity every

ten minutes and a secondary activity that might take place at the same time. The survey randomly

draw more than two thousand participants from the Dutch population aged 12 and above since

2006. For the same respondents, the DTUS also contains CPS-type recalled weekly hours and

some demographics including age, gender, education and number of children. So the DTUS serves

as a particularly precious benchmark against which we can evaluate different estimators. We are
15In Supplemental Appendix C, we consider the case where the ATUS hours contain classical measurement error

and show that all the theorems in Section 3.2 still hold with minor modification.
16In Supplementary Appendix A, we compare the ATUS sample with a much bigger CPS sample and do not find

significant difference between the distributions of key variables from the two samples.
17The UK time use surveys in 1973, 1974, 1983 and 1984 covered seven days of a week; and more recent time use

surveys in the UK cover two days. While diary records for two days still suffer from time specificity problem, they are
likely to provide partial information on weekly activity patterns that the ATUS cannot. Readers can refer to IPUMS
(2020) for sample characteristics of time use surveys in different countries.

6



going to base our simulation studies on the DTUS. Unfortunately, the DTUS does not contain

detailed information on income, which renders it unsuitable for our empirical analysis involving

wage or earnings.18 But the DTUS contains demographic information which allows us to draw

some empirical findings about labor supply along that line.19

3 Good News and Bad News about Labor Supply

This section has good news and bad news. We start with the bad news in Section 3.1 – that is,

what time use surveys cannot tell us about labor supply. Our analysis echoes Frazis and Stewart

(2012) that neither the weekly hours worked nor its distribution can be identified using the ATUS

type time use survey data. Then we proceed to the good news in Section 3.2 – that is, to provide

consistent and relatively efficient estimators of labor supply elasticities and to investigate their

properties.

3.1 Bad News: Potential Hours and Impossibility Results

The bad news delivered in this subsection is either reiteration or immediate corollaries of the

reasoning in Section II of Frazis and Stewart (2012), but we rephrase it under the potential outcome

framework. We find it necessary to reiterate Frazis and Stewart (2012)’s insights here because their

significance and implications appear not to be fully appreciated in empirical research using time

use surveys. In addition, the notation under the potential outcome framework is instrumental for

our analysis in Section 3.2, the main theoretical results of this paper.

Let’s start with a simple question: how do we recover the distribution of weekly hours worked

from the ATUS daily hours data? Since the ATUS diary day is randomly drawn, one may think of

the ATUS daily hours as a representative sample of the weekly hours and, therefore, the distribution

of weekly hours may be recovered from the distribution of the ATUS daily hours with adjustment

for diary day sampling weights.

A small experiment using the DTUS data illustrates that this is a bad idea. In Figure 1, the

solid line shows the kernel density of the DTUS weekly hours worked, which is directly observable

in the DTUS for each individual. To mimic the ATUS, we randomly choose one day from the
18The income variable in the DTUS is only the annual income quartiles.
19For a more detailed description of the DTUS, see Fisher et al. (2018).
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DTUS as the diary day for each individual, and plot the kernel density of the hours worked on the

diary day multiplied by 7. The dashed and the dotted lines in Figure 1 show the kernel densities

for two such random experiments. They differ from the DTUS weekly hours significantly.20

It turns out that it is just impossible to identify the distribution of weekly hours from daily

hours without ad hoc assumptions. Now we introduce notation to facilitate the discussion. Let the

individual respondent be indexed by i = 1, . . . , n. Let Hw
i denote the true weekly hours worked

by individual i. The recalled weekly hours worked HCPS
i in the CPS is an error-ridden measure of

Hw
i ,

HCPS
i = Hw

i + ei. (1)

That the measurement error is nonclassical implies that ei could be correlated with Hw
i . Let

t ∈ {1, . . . , 7} denote the days of a week,21 and let Hit denote the true daily hours worked by

individual i on day t. Naturally, the weekly hours worked equal to the sum of daily hours worked

over the week,

Hw
i =

7∑
t=1

Hit. (2)

Let ti be the diary day of individual i in the ATUS, then the daily hours worked in ATUS, denoted

as HATUS
i , is just Hiti . To facilitate our analysis, it helps to write the ATUS daily hours in an

alternative way. Let dit ≡ I{ti = t} be seven diary day dummy variables for each individual i.22

Then

HATUS
i = Hiti =

7∑
t=1

ditHit. (3)

Since for any individual interviewed in the ATUS, one and only one of the seven diary dummies

equals 1, we only have an accurate measure of his/her hours worked for a single day of the week,

but not for the other six days.23

Now it helps to recall the conventional wisdom in the program evaluation literature that even in

purely random experiments, neither individual treatment effect nor its distribution in the population
20In Supplementary Appendix A, we take the common five-day work schedule into account, and the results are

similar.
21t = 1 indicates Sunday, t = 2 indicates Monday, and so on.
22The symbol ≡ indicates that the quantity on the left side is defined as the expression on the right side.
23Throughout the paper, we assume that the hours worked in time use surveys are the true hours worked for the

prescribed period. This is merely for the simplicity of exposition, because all the theoretical results still hold if the
measurement error of hours worked in time use surveys is classical. In Supplementary Appendix C, we discuss this
in details.
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can be identified without ad hoc assumptions on the joint distribution of (Yi1, Yi0).24 Following the

program evaluation literature, we call Hit “potential hours” of diary day t (t = 1, . . . , 7).

The following impossibility results naturally follow. First, without ad hoc assumptions, it is

impossible to recover individual weekly hours worked Hw
i from what is available in the ATUS.

This impossibility result implies some important limitations of the imputed weekly hours – see

Remark 2 below for details. Second, the ATUS only contains information regarding the marginal

distributions of daily hour worked on a single day, but provides no information about the dependence

among (Hi1, . . . , Hi7)
′. The latter is required to find out the distribution of weekly hours Hw

i . In

consequence, the distribution of the weekly hours worked Hw
i (as well as its variance) cannot be

recovered using the ATUS daily hours data. Third, computing the standard errors of ATUS based

estimators needs extra effort. Without the potential outcome framework, this was not obvious, but

the reason will become clearer after we give the standard error formulas for various estimators in

Theorem 7.

3.2 Good News: Labor Supply Parameters

As Section II.1 of Frazis and Stewart (2012) pointed out, the daily hours worked in the ATUS can

be used to produce estimates of the weekly labor supply regression parameters, despite the impos-

sibility results in Section 3.1.25. In particular, such parameters include labor supply elasticities, the

application we will focus on in the rest of this paper. The reason, rephrased under the potential out-

come framework, is as follows. The ATUS closely resembles purely random experiments, since the

diary day is completely randomly chosen for each respondent. In random experiments, E(Yi1−Yi0),

the average treatment effect (ATE) and E(Yi1 − Yi0|Xi = x), the conditional average treatment

effect (CATE) can be identified and estimated using the data that records either Yi1 or Yi0 (but

not both) for each individual. Since regression equations are essentially conditional mean models,

both E(Hw
i ) and E(Hw

i |Xi = x), the counterparts of the ATE and the CATE in our scenario, can

be identified and estimated. In fact, the labor supply elasticity estimator we recommend later in

this section resembles a similarity to the matching regression estimator of the ATE in that it uses
24Let Yi1, Yi0 and di denote the outcome if treated, the outcome if not treated and the treatment indicator for

individual i, respectively, then the observed outcome is Yi = diYi1 + (1− di)Yi0. It is well known that the individual
treatment effect, defined as Yi1 − Yi0, cannot be identified.

25They also pointed out that the Tobit model leads to inconsistent estimators even though there are many zero-value
observations in time use surveys.
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the actual ATUS daily hours worked by other individuals with similar exogenous characteristics to

impute the six missing daily hours worked for each individual in the ATUS.

One unique feature, however, differentiates the labor supply elasticity estimation problem from

the usual treatment effect estimation. Elasticity hinges on not only the mean, but also the par-

tial derivative of the conditional mean function ∂E(Hw
i |Xi = x)/∂x, which would correspond to

∂E(Yi1 − Yi0|Xi = x)/∂x and seems not to have attracted much attention in the treatment effect

literature. Because we focus on the partial effect of Xi, we find that unlike in the treatment effect

literature where the matching estimator aims to impute Yi1 or Yi0 itself, the characteristics to im-

pute the missing potential hours in our context must be exogenous predictors of the daily hours

worked.

3.2.1 Model and Estimators

To be concrete, we consider the following equation of weekly labor supply,

Hw
i = X ′

iβ + Ui, i = 1, . . . , n, (4)

where Xi is a p × 1 vector of observable independent variables that affect hours worked with its

first element being unit one. The explanatory variables Xi, including log wage in particular, tend

to be correlated with Ui, and hence is often endogenous. Moreover, log wage may also be subject

to measurement errors.26 In response to these problems, we assume that a q × 1 vector of IVs Zi

is available.

The ideal but infeasible case is when the true weekly hours worked Hw
i were observable for each

individual. The usual 2SLS estimator is then

β̂wk = (X ′PzX)−1(X ′PzH
w), (5)

where Hw ≡ (Hw
1 , . . . , H

w
n )

′, X ≡ (X1, . . . , Xn)
′, Z ≡ (Z1, . . . , Zn)

′ and Pz ≡ Z(Z ′Z)−1Z ′. Since it

uses the unobservable true weekly hours worked, we call it week estimator and use it as an infeasible

benchmark.
26See a survey paper by Bound et al. (2001) for details.
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Now we consider how to utilize the observed ATUS daily hours. Because the ATUS is designed

to survey about a randomly chosen day for each individual, we maintain the following assumption

throughout the paper.27

Assumption 1 (Random diary day). Diary day dummies (di1, . . . , di7)
′ are independent from (X ′

i,

Z ′
i, Ui,Hi1, . . . , Hi7)

′.

We used Pearson’s chi-squared test to test the independence between the ATUS diary day

and each of the other variables used in this paper.28 The tests results are in Table A.11 of the

Supplementary Appendix A, and they strongly support Assumption 1.

Let HATUS denote the n× 1 vector of ATUS daily hours. For each t ∈ {1, . . . , 7}, suppose the

subsample size for diary day t is nt, let Ht ≡ (H1t, . . . , Hnt)
′, and let Dt denote an n× n diagonal

matrix with elements dit (i = 1, . . . , n). What Dt does is just to select the subsample for diary day

t. Equation (3) can be re-written in such matrix notation as HATUS =
∑7

t=1DtHt.

Since the diary day is chosen randomly, it appears natural to expect the day-to-day variation of

daily hours worked within a week to cancel out in large samples if we pool all diary days together.

This intuition leads to what we call pool estimator,

β̂pool ≡ (X ′PzX)−1X ′Pz

( 7∑
t=1

rntDtHt

)
. (6)

In eq. (6), rnt ≡ n/nt adjusts for the sampling probability of the diary days. If every day gets

1/7 probability of being sampled, then the pool estimator is equivalent to a simple 2SLS using the

pooled ATUS daily hours multiplied by seven.

Remark 1 (Adjusting for diary day sampling probabilities in β̂pool). Most empirical research

adjusts for the sampling weights of individuals. But eq. (6) implies that for time use surveys,

it is important to also adjust for the diary day sampling probabilities with rnt when pooling the

observations, otherwise Theorem 2 below implies that β̂pool will be inconsistent. The distinction

between these two types of adjustment will be discussed further in Remark 12.
27ATUS User’s Guide (2020, Section 3.5) states that “10 percent of the sample is allocated to each weekday, and

25 percent of the sample is allocated to each weekend day.”
28Most of our regressors are categorical variables, for which chi-squared test can be directly used. We bin the

continuous variables, like hourly wage, according to their deciles before applying the chi-squared tests for them.
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The second intuitive estimator relies on the disaggregation of the weekly labor supply model

into a number of daily labor supply models; that is, for t = 1, . . . , 7,

Hit = X ′
iβt + Uit, (7)

where E(Uit) = 0. Then the parameters β in the weekly labor supply model can be re-written as

β =
∑7

t=1 βt. Therefore, it appears to be a logical attempt to estimate β using what we call day

estimator, defined as

β̂day ≡
7∑

t=1

β̂t =

7∑
t=1

(X ′PztX)−1X ′PztHt, (8)

where for each t ∈ {1, . . . , 7}, β̂t is simply the usual 2SLS estimator of βt using only the subsample

for diary day t, and Pzt = (DtZ)(Z ′DtZ)−1(DtZ)′.

Later we are going to show that both the pool estimator and the day estimator are consistent

under mild conditions. However, neither of them is ideal in terms of efficiency and robustness

against small sample sampling errors. Instead, we propose a third feasible estimator, which deviates

from the infeasible benchmark β̂wk as little as possible, and we will show that the third estimator

outperforms the first two in terms of asymptotic efficiency and small sample robustness.

In light of eq. (2) and the definition of Pz,29 the infeasible 2SLS estimator β̂wk can be re-written

as

β̂wk = (X ′PzX)−1X ′Pz

7∑
t=1

Ht = (X ′PzX)−1X ′PzZ

7∑
t=1

(
Z ′Z/n

)−1 (
Z ′Ht/n

)
.

By the law of large numbers, we know that (Z ′Z/n)−1 (Z ′Ht/n)
p.−→ [E(ZiZ

′
i)]

−1E(ZiHit). As-

sumption 1 implies that in this expression, the unconditional means equal to the conditional means,

i.e., [E(ZiZ
′
i)]

−1E(ZiHit) = [E(ZiZ
′
i | dit = 1)]−1E(ZiHit | dit = 1). As a result, we can use the

subsample for diary day t, instead of the entire sample, to estimate the two conditional means for

each t. Replace the last part of β̂wk by its diary day t counterpart, we get

β̂im ≡ (X ′PzX)−1X ′PzZ
7∑

t=1

(
Z ′DtZ/nt

)−1 (
Z ′DtHt/nt

)
. (9)

We call this estimator impute estimator. In practice, impute estimator is easy to compute using
29Moreover, Pz is an idempotent matrix, i.e., PzPz = Pz.

12



the ATUS data by the following steps:

1. (“X first stage”) Regress Xi on Zi using the entire sample and take the fitted values X̂i;

2. (“H first stage”) For each diary day t, regress HATUS
i (i.e., Hiti) on Zi using the subsample

dit = 1 to get α̂t, and impute the weekly hours worked by Ĥw
i =

∑7
t=1 Ĥit =

∑7
t=1 Z

′
iα̂t for

the entire sample;

3. (“Second stage”) Regress Ĥw
i on X̂i using the entire sample and get β̂im.

Compared to the usual 2SLS estimator, this estimator adds one more simple step in the middle

where the values of the unobservable weekly hours Hw
i is imputed based on the IV.

In the “H first stage”, if the hours worked by individual i on day t is not observed, the impute

estimator essentially matches individual i with those respondents in the diary day group t who

have similar values of Zi with her, and uses their hours worked as the imputed hours for individual

i. This is similar to the “synthetic time diary” method employed by Aguiar et al. (2017). It also

resembles the matching estimator in the treatment effect literature, except that here we make it

clear that the basis for matching has to be exogenous IVs Zi, and cannot be endogenous regressors

Xi in the weekly labor supply eq. (4).

Remark 2 (Limitation of imputed weekly hours Ĥw
i ). It might be tempting to think of Ĥw

i as

“predicted” weekly hours worked for worker i, and to use Ĥw
i to impute other variables. For

example, one might propose to impute hourly wage rate by Ii/Ĥ
w
i for weekly paid workers, where Ii

is weekly earning of worker i. Unfortunately, our earlier impossibility result indicates that such use

of Ĥw
i , in general, is wrong. Ĥw

i is merely an intermediate that facilitates efficient estimation of β.

In addition, our analysis emphasizes that imputation of Ĥw
i should only be based on the instruments

Zi, but not endogenous Xi. Even though in many cases the latter may deliver a better “predicted”

weekly hours, it results in bias in β estimates.

Remark 3 (Exogenous Xi). If Xi are exogenous (hence Xi are their own IVs), then β̂wk =

(X ′X)−1(X ′Hw) simply becomes the OLS estimator for model eq. (4). It is easy to verify that

in this case β̂day is numerically identical to the impute estimator β̂im. The two differ if Xi are

endogenous.
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Remark 4 (Classical measurement error in the ATUS). We acknowledge that time use surveys are

not error free. Let Hit be the true hours worked on day t, and let HATUS
it = Hit + eATUS

it be the

ATUS hours if respondent i was interviewed for his/her hours worked on day t. In Supplementary

Appendix C, we show that when eATUS
it is classical measurement error, all the theoretical results

that we will elaborate in Section 3.2.2 continue to hold, with only a same small adjustment term

added to the asymptotic variances of all feasible estimators.

3.2.2 Large Sample Properties

In this section, we will show that all proposed feasible estimators for the ATUS are consistent under

the same conditions for the consistency of the usual 2SLS estimator, as if the true weekly hours

worked were observed. In addition, we will show that the impute estimator has superior relative

asymptotic efficiency. The proofs for all the theorems in this section are provided in Supplementary

Appendix B. We maintain the following three assumptions throughout the paper.

Assumption 2 (Random sample). For any i ∈ {1, . . . , n}, the vector (Hi1, . . . , Hi7, X
′
i, Z

′
i, di1, . . . ,

di7)
′ is randomly drawn from the population.

Assumption 3 (Valid and relevant instrumental variables in weekly equation). Assume that

E(UiZi) = 0, rankE(ZiZ
′
i) = q (q ≥ p), and rankE(ZiX

′
i) = p.

Assumption 4 (Diary day sampling probability). Assume that each day of a week has a positive

probability of being sampled. That is, 0 < Pr(dit = 1) < 1 for each day t ∈ {1, . . . , 7}.

Theorem 1 (Identification). Under Assumptions 1 to 4, the unknown parameters β are identified

using the ATUS data.

Theorem 2 (Consistency). Under Assumptions 1 to 4, we have that β̂wk, β̂im, β̂pool, and β̂day all

converge to β in probability as n → ∞.

Remark 5 (Weak conditions for consistency of β̂day). We need to point out that all the estima-

tors we consider, including the day estimator, are consistent under the weaker assumption that

E(UiZi) = 0 (Assumption 3), instead of the stronger E(UitZi) = 0 (Assumption 5 below). That is,

the IV only need to be valid for the weekly labor supply equation, and not necessarily so for each
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daily ones. Even if each daily 2SLS estimator β̂t might be inconsistent for βt, the day estimator

β̂day still is.

The 2SLS estimator based on the CPS recalled weekly hours, on the other hand, is in general

inconsistent. This is again a well known consequence of the nonclassical measurement error ei

defined in eq. (1).30

To derive the asymptotic distributions, it helps to consider the “H first stage” where the po-

tential daily hours Hit are regressed on the IV Zi:

Hit = Z ′
iαt + Vit, (10)

and let Vt = (V1t, . . . , Vnt)
′ denote the vector of projection residuals. By construction, E(Vit) = 0

and E(ZiVit) = 0.

To show the relative asymptotic efficiency of the estimators (feasible as well as the infeasible

benchmark), we first give the following two theorems (Theorems 3 to 4). We need to emphasize

that they are only to show the relative asymptotic efficiency of the estimators and should not be

used to compute the standard errors of the feasible estimators, since they involve variables that

are not observed in the data. Feasible standard error formulas will be based on the two theorems

that follow (Theorems 5 to 6). Define A ≡ BC−1B′ with B ≡ E(XiZ
′
i) and C ≡ E(ZiZ

′
i), and let

rt = 1/Pr(dit = 1).

Theorem 3 (Infeasible Benchmark). Under Assumptions 1 to 4, we have
√
n(β̂wk−β)

d.→ N (0, Ωwk),

with

Ωwk ≡ A−1BC−1E(ZiU
2
i Z

′
i)C

−1B′A−1. (11)

Theorem 4 (Relative Asymptotic Efficiency). Under Assumptions 1 to 4, we have the following

asymptotic normality results:

(i)
√
n(β̂im − β)

d.→ N (0, Ωim), with Ωim = Ωwk +Ωim−wk, where

Ωim−wk ≡ A−1BC−1
[ 7∑
t=1

(rt − 1)E(ZiV
2
itZ

′
i)− 2

∑
1≤t<τ≤7

E(ZiVitViτZ
′
i)
]
C−1B′A−1, (12)

30The probability limit of β̂CPS
wk ≡ (X ′PzX)−1(X ′PzH

CPS), the 2SLS estimator based on the CPS weekly hours,
is β+(E(XiZ

′
i)[E(ZiZ

′
i)]

−1E(ZiX
′
i))

−1E(XiZ
′
i)[E(ZiZ

′
i)]

−1E(Ziei), and the latter term is in general not zero, since
E(Ziei) ̸= 0 for the nonclassical measurement error ei.
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and Ωwk is the infeasible asymptotic variance-covariance matrix of the infeasible benchmark

estimator β̂wk defined in Theorem 3;

(ii)
√
n(β̂pool − β)

d.→ N (0, Ωpool), with Ωpool = Ωim +Ωpool−im, where

Ωpool−im

≡A−1BC−1
[ 7∑
t=1

(rt − 1)E(Ziα
′
tZiZ

′
iαtZ

′
i)− 2

∑
1≤t<τ≤7

E(Ziα
′
tZiZ

′
iατZ

′
i)
]
C−1B′A−1; (13)

(iii)
√
n(β̂im− β̂wk)

d.→ N (0, Ωim−Ωwk), hence n(β̂im− β̂wk)
′(Ωim−Ωwk)

−1(β̂im− β̂wk) ∼ χ2(p).31

As is clearly shown in the proof, both Ωim−wk and Ωpool−im are variance-covariance matrices

of some random vectors (hence positive definite), which in turn implies that Ωpool ≥ Ωim ≥ Ωwk.

Although the pool estimator is intuitive and consistent, the impute estimator is better in terms of

asymptotic efficiency.

Remark 6 (Relative efficiency of β̂wk). It is not surprising that the infeasible estimator β̂wk is

asymptotically the most efficient should the true weekly hours worked be observed. The efficiency

difference between β̂wk and β̂im results from the fact that β̂im only utilizes diary day subsamples to

impute Ĥit (and sum Ĥit to get Ĥw
i ), while β̂wk directly imputes Ĥw

i using the entire sample.32 For

this same reason, the efficiency loss of β̂im compared to β̂wk depends on the correlations among the

daily hours for the same individual.33 This can be seen from the second term in the square brackets

in the expression of Ωim−wk in Theorem 4(i).

Remark 7 (Relative efficiency of β̂im). The asymptotic efficiency gain of β̂im compared to β̂pool

might be less expected. But is also very intuitive – to impute Ĥit, β̂im uses only data on Hit, the

relevant diary day observations. On the contrary, β̂pool uses data on both Hit and Hiτ (τ ̸= t),

and Hiτ observations merely add noise, which results in a less efficient estimator. An even less

obvious point is that the size of the efficiency gap depends on the diary day sampling weights. In
31Here we do not provide the asymptotic variance for β̂day, but we will provide asymptotic variance for β̂day after

imposing Assumption 5. Assumption 3 only guarantees that the IVs are valid for the weekly labor supply equation,
but not necessarily for the daily ones, so β̂t might be inconsistent for βt for some t. The asymptotic distribution of
IV estimators, when the IVs are invalid, is very complicated in general (for details, see Kiviet and Niemczyk, 2009).

32Note that β̂wk = (X ′PzX)−1(X ′PzH
w) = (X ′PzPzX)−1(X ′PzPzH

w) = (X̂ ′X̂)−1(X̂ ′Ĥw) since Pz is an idem-
potent matrix.

33Or more precisely, the correlations among the residuals after projecting the daily hours on the IVs.
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the extreme case where there is no variation in daily hours (i.e., Hi1 = · · · = Hi7, and hence

E(ZiVitVitZ
′
i) = E(ZiVitViτZ

′
i) and E(Ziα

′
tZiZ

′
iαtZ

′
i) = E(Ziα

′
tZiZ

′
iατZ

′
i) for all t, τ = 1, . . . , 7),

one might think that it does not matter which day gets surveyed, and hence the pool estimator

(subject to sampling weights adjustment) suffices. However, part (ii) of Theorem 4 shows that for

Ωpool−im to be zero, we need equal sampling weights so that rt = limn→∞ n/nt = 7 for t = 1, . . . , 7.

Otherwise Ωpool > Ωim > Ωwk remains. This means that, given the sampling weights of the ATUS

diary days (i.e., r1 = r7 = 4 and r2 = · · · r6 = 10), the impute estimator will be more efficient than

the pool estimator even when there is no variation in daily hours.

Remark 8 (Hausman test between the CPS and the ATUS). Part (iii) of Theorem 4 indicates

that we can test the presence of nonclassical measurement errors in the recalled weekly hours in the

CPS using the Hausman test. Under the null hypothesis of no nonclassical measurement errors, the

2SLS based on the recalled weekly hours in the CPS will be consistent and as efficient as the week

estimator β̂wk; while under the alternative, such 2SLS will be biased. In both cases, the impute

estimator β̂im is consistent but less efficient.

Even though Theorem 4 clearly ranks the estimators in terms of asymptotic relative efficiency,

it is not very informative about how to compute the standard errors of the estimators. The reason

is that in Theorem 4, both E(ZiU
2
i Z

′
i) in Ωwk and E(ZiVitViτZ

′
i) (1 ≤ t < τ ≤ 7) in Ωim−wk make

it seem that one needs to observe the same individuals on different days in order to estimate Ωim,

and the ATUS is inadequate in this regard. Fortunately, the asymptotic variances of β̂im and β̂pool

can be computed without first deriving that for the infeasible β̂wk, which leads to straightforward

formulas for the standard errors of the feasible estimators. Such results are summarized in the

following theorem.

Theorem 5 (Asymptotic Normality I). Under Assumptions 1 to 4, we have the following asymptotic

normality results:

(i)
√
n(β̂im − β)

d.→ N (0, Ωim), with

Ωim ≡ A−1BC−1


7∑

t=1

rtE(ZiV
2
itZ

′
i) + E

Zi

(
Z ′
i

7∑
t=1

αt −X ′
iβ

)2

Z ′
i


+2

7∑
t=1

E

[
ZiVit

(
Z ′
i

7∑
t=1

αt −X ′
iβ

)
Z ′
i

]}
C−1B′A−1, (14)
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and note that Ωim in eq. (14) equals to that given in Theorem 4(i);

(ii)
√
n(β̂pool − β)

d.→ N (0, Ωpool), with

Ωpool ≡ A−1BC−1

{
7∑

t=1

rtE
(
ZiV

2
itZ

′
i

)
+

7∑
t=1

rtE(Ziα
′
tZiZ

′
iαtZ

′
i)

+ E
(
Ziβ

′XiX
′
iβZ

′
i

)
− 2

7∑
t=1

E
[
Ziα

′
tZiX

′
iβZ

′
i

]
+2

7∑
t=1

E

[
ZiVit

(
Z ′
i

7∑
t=1

αt −X ′
iβ

)
Z ′
i

]}
C−1B′A−1, (15)

and note that Ωpool in eq. (15) equals to that given in Theorem 4(ii).

To derive the asymptotic normality for the day estimator, it is necessary to make an additional

assumption.

Assumption 5 (Instrumental variables in daily equations). Assume that E(UitZi) = 0 for all

t = 1, . . . , 7, that is, the instrumental variables are valid in the daily labor supply equations.

Theorem 6 (Asymptotic Normality II). Under Assumptions 1 to 5, we have:

(i)
√
n(β̂day − β)

d.→ N (0, Ωday), with

Ωday ≡ A−1BC−1

[
7∑

t=1

rtE(ZiU
2
itZ

′
i)

]
C−1B′A−1; (16)

(ii) The asymptotic efficiency gap between the asymptotic variances of β̂day and β̂im is

Ωday −Ωim = A−1BC−1

[ 7∑
t=1

(rt − 1)E[Zi(Uit + Vit)(Uit − Vit)Z
′
i]

−
∑
t̸=τ

E[Zi(Uit + Vit)(Uiτ − Viτ )Z
′
i]

]
C−1B′A−1. (17)

Theorem 6(ii) reveals that there is no general efficiency ranking between β̂day and the other two

feasible estimators. Contrary to Theorem 2, the asymptotic normality of the day estimator β̂day

does require a stronger condition than the other estimators, i.e., Assumption 5. The reason can be

seen from eq. (16), where Uit, the error term in the daily labor supply equation plays a central role.

18



In addition, Uit in eq. (16) cannot be consistently estimated if Assumption 5 fails to hold since βt

are not consistently estimable in this case, then the standard error of β̂day will not be feasible to

compute using the ATUS data.

Remark 9 (Stronger conditions for asymptotic normality of β̂day). The distinction whether As-

sumption 5 is assumed could be consequential in certain contexts. For example, Goldin (2014, pp.

1091) found that “firms …disproportionately reward individuals who labored long hours and worked

particular hours”, and this is responsible for a noticeable proportion of gender gap in pay. In other

words, comparing two workers who have the same unobserved factors that determine the weekly

hours worked (i.e., the same Ui), the one who works a regular schedule (or can meet clients during

particular periods, or can work when everybody else does, etc.) tends to be paid with a higher hourly

wage than the one who works a flexible schedule. The association between flexible schedule (i.e.,

uneven allocation of Uit among seven days) and lower wage (i.e., Xi) in turn implies that an IV

that is valid for the weekly labor supply equation is well likely to be invalid for the daily equations.

Remark 10 (Relative efficiency of β̂day). In Supplementary Appendix B (following the proof of

Theorem 6, we show that the sign of Ωday − Ωim is not definite (might be positive or negative),

indicating that there is no fixed asymptotic efficiency ranking between β̂day and β̂im. The sign of

Ωday −Ωim depends on a number of factors, which will be detailed in Supplementary Appendix B.

One can easily construct examples where Ωday ≥ Ωim or the opposite.34

Remark 11 (A Variation of β̂day). An anonymous referee suggested a variation of the day estima-

tor, which we denote as β̃day and is computed using the ATUS data by the following steps:

1. (“X first stage”) Regress Xi on Zi using the entire sample and take the fitted values X̂i;

2. (“Daily second stage”) For each diary day t, regress HATUS
i (i.e., Hiti) on X̂i using the

subsample dit = 1 to get β̃t, and let β̃day ≡
∑7

t=1 β̃t.

This estimator is appealing for two evident reasons: first, compared to the impute estimator,

β̃day does not need to impute Ĥw
i and saves computational burden; second, compared to the day

estimator, β̃day imputes X̂i using the entire sample and should be more stable in small samples.
34Inspired by an anonymous referee, we conducted simple simulation experiments to demonstrate both cases. These

results are not reported but available upon request.
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In Supplementary Appendix B, we will prove that β̃day is asymptotically equivalent to β̂im under

Assumptions 1 to 5.

Since β̃day consists of seven daily elasticity estimators β̃t, its asymptotic normality requires

Assumption 5, which we explained in Remark 9 might be too restrictive in some cases. For this

reason, we believe that the impute estimator β̂im is slightly more versatile. If a researcher is

convinced that Assumption 5 is plausible in her particular study, then β̃day is simpler to compute

and performs equally well as β̂im in large samples.35

The asymptotic variance formulas in Theorem 5 and Theorem 6 lead to easy-to-compute stan-

dard errors for β̂im, β̂pool and β̂day. To introduce them, we need some notation.

Let An ≡ n−1
∑n

i=1 X̂iX̂
′
i, Bn ≡ n−1

∑n
i=1XiZ

′
i and Cn ≡ n−1

∑n
i=1 ZiZ

′
i. Let α̂t be the OLS

estimates of αt in the “H first stage” eq. (10) using the subsample for diary day t, and let V̂it denote

the residuals. Let Ûit = Hit −X ′
iβ̂t denote the residuals of the daily labor supply eq. (7) using the

subsample for diary day t.

Using this notation, we define

Ω̂im ≡ A−1
n BnC

−1
n


7∑

t=1

rnt

(
1

nt

n∑
i=1

ditZiV̂
2
itZ

′
i

)
+

 1

n

n∑
i=1

Zi

(
Z ′
i

7∑
t=1

α̂t −X ′
iβ̂im

)2

Z ′
i


+2

7∑
t=1

[
1

nt

n∑
i=1

ditZiV̂it

(
Z ′
i

7∑
s=1

α̂s −X ′
iβ̂im

)
Z ′
i

]}
C−1
n B′

nA
−1
n , (18)

Ω̂pool ≡ A−1
n BnC

−1
n

{
7∑

t=1

rnt

(
1

nt

n∑
i=1

ditZiV̂
2
itZ

′
i

)
+

7∑
t=1

rnt

(
1

n

n∑
i=1

Ziα̂
′
tZiZ

′
iα̂tZ

′
i

)

+

(
1

n

n∑
i=1

Ziβ̂
′
poolXiX

′
iβ̂poolZ

′
i

)
− 2

7∑
t=1

[
1

n

n∑
i=1

Ziα̂
′
tZiX

′
iβ̂poolZ

′
i

]

+2
7∑

t=1

[
1

nt

n∑
i=1

ditZiV̂it

(
Z ′
i

7∑
s=1

α̂s −X ′
iβ̂im

)
Z ′
i

]}
C−1
n B′

nA
−1
n , (19)

Ω̂day ≡ A−1
n BnC

−1
n

[
7∑

t=1

rnt

(
1

nt

n∑
i=1

ditZiÛ
2
itZ

′
i

)]
C−1
n B′

nA
−1
n . (20)

Theorem 7 (Standard errors). Under Assumptions 1 to 4, we have the following results: (i)

Ω̂im
p.−→ Ωim; (ii) Ω̂pool

p.−→ Ωpool. If in addition we assume Assumption 5 holds, then we also
35In the DTUS-based simulations in Section 4.1, where Assumption 5 is satisfied, the performance of β̃day is almost

identical to β̂im.
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have Ω̂day
p.−→ Ωday.

Remark 12 (Standard error of β̂pool). One may be inclined to compute the standard error of the pool

estimator β̂pool using stratification formula (for example, eq. (20.8) in Wooldridge, 2010), provided

that the sampling weights are adjusted for.36 But we need to point out that eq. (6) is conceptually

and mathematically different from adjusting for the weights in stratified sampling designs, where rnt,

the inverse of the sampling weight enters both the numerator and the denominator of the estimator,

while rnt enters our β̂pool only in the numerator.

4 Lessons from the Dutch Time Use Survey

The sample we use in this section consists of individuals from the DTUS (see Fisher et al., 2018, for

details) aged between 25 and 54 surveyed in 1980, 1985, 1990, 1995, 2000 and 2005, whose recalled

hours and recorded diary hours are both positive. The entire sample contains 6,567 individual-year

records.

4.1 Simulations

Based on the DTUS data, we design a simulation study to compare the finite sample performance

of the estimators discussed previously. The nice thing about the DTUS is that it contains CPS-type

recalled weekly hours, as well as daily diary hours for an entire week. As a result, we are able to

compute the week estimator β̂wk, which would have been impossible for the ATUS.

Given the daily hours worked HDTUS
it (t = 1, . . . , 7) in the DTUS, we generate a single en-

dogenous regressor X̃i and a single instrumental variable Z̃i such that eq. (7) is satisfied with

Xi = (1, X̃i)
′, Zi = (1, Z̃i)

′, Corr(Uit, Zi) = 0 for t = 1, . . . , 7. In particular, let HDTUS denote the

n× 7 matrix with elements HDTUS
it , and let T1, . . . , T7 be the principal components of HDTUS . We

set Z̃i to be the first principal component of HDTUS , i.e., Z̃ = T1. To introduce the endogeneity,

we generate an n× 7 matrix of independent random variables from N(0, 2),37 denoted by V . Then

we set Hit = HDTUS
it + Vit and X̃i = Z̃i + ρ

∑7
t=1 Vit for i = 1, . . . , n and t = 1, . . . 7. The true

36In fact, to the best of our knowledge, the current literature using the ATUS is not explicit about whether and
how the diary day sampling probabilities are adjusted for (see, for example, Frazis and Stewart, 2012; Barrett and
Hamermesh, 2019). We do not want to speculate how the standard error is computed in the literature, and here we
only base our discussion on the formula of β̂pool in eq. (6).

37Such that Var(Ui) ≈ Var(T1) in the exogenous regressor case.

21



parameters βt are therefore just the weights in Ht (t = 1, . . . , 7) associated with the first principal

component. The true value of β in eq. (4) is 2.2694.38 By varying ρ, we vary Corr(X̃i, Ui), the

degree of endogeneity of the regressor X̃i. When ρ = 0, the regressor is exogenous, and we try

other values of ρ such that Corr(X̃i, Ui) ∈ {0, 0.25, 0.5, 0.75}. Note that as ρ increases, the strength

of the IV also decreases. For the above values of ρ, Corr(X̃i, Z̃i) equals 1, 0.95, 0.80 and 0.43,

respectively.

To evaluate the finite sample performance of the various estimators considered in Section 3, we

randomly draw a subsample of size n ∈ {250, 500, 1000, 2500}. Then we generate fictitious ATUS-

type samples by randomly choosing only one day for each individual in the drawn subsamples

using the diary day sampling weights of the ATUS.39 We repeat the experiment 10, 000 times, and

Table 1 reports the mean squared errors (MSE), squared biases and variances for all estimators.

Some patterns are apparent. First, the usual 2SLS estimator using the CPS-type recalled weekly

hours, β̂re, has the largest MSE in almost all parameterizations, which is roughly ten times larger

than the maximum among all the other estimators. The large MSE is nearly entirely driven by

the large bias, which is in turn a result of nonclassical measurement error in the CPS-type recalled

weekly hours. Below we will illustrate this nonclassical measurement error using the DTUS data

in Figure 2. Second, for almost all parameterizations, the biases of all the estimators based on the

diary hours are negligible, and the differences in the performance of β̂wk, β̂im, β̂pool and β̂day reside

in efficiency and robustness. Third, since the infeasible week estimator β̂wk uses the diaries of an

entire week, it is much more efficient than the others. This verifies the result of Theorem 4(i).

Fourth, the impute estimator β̂im is more efficient than β̂pool and β̂day in all parameterizations.

Again, this verifies the result of Theorem 4(ii). Fifth, when the regressor is exogenous, β̂im and

β̂day perform equally well. Sixth, the MSE, biases and variances of β̃day discussed in Remark 11

is almost identical (not reported) to those of β̂im, since Assumption 5 is satisfied here. This is

because, as mentioned in Remark 3, the two estimators are numerically identical in this case. Last

but not least, the day estimator β̂day appears to be unstable, especially when the sample size is

smaller and when the IV is weaker. The reason is that β̂day relies on the daily 2SLS estimators β̂t.

When the sample size is small, the effective sample size for each day gets even smaller, and taking
38β1 = 0.0007, β2 = 0.4379, β3 = 0.4554, β4 = 0.4576, β5 = 0.4528, β6 = 0.4304 and β7 = 0.0346.
39That is, the probability of being drawn is 0.25 for t = 1 (Sundays) and t = 7 (Saturdays), and 0.1 for the others.
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the inverse of the sample average matrices magnifies the sampling errors substantially.40

4.2 Labor Supply Elasticity Estimates

In this section, we illustrate the empirical impacts on the labor supply elasticity estimates of both

nonclassical measurement errors and time specificity using the DTUS.

Figure 2 shows the measurement error in the recalled weekly hours worked in the Dutch data.

The “measurement error” in Figure 2 equals the recalled weekly hours worked minus the weekly

hours worked from the seven-day diaries in the DTUS.41 If the recalled hours worked do not have

nonclassical measurement error, then the measurement error in Figure 2 would be uncorrelated

with the weekly hours from the seven-day diaries. Panel A of Figure 2 suggests the opposite:

the measurement error in the recalled hours is negatively correlated with the hours from time use

survey. Its kernel density (panel B of Figure 2) suggests that more people overstate the recalled

hours worked than understate. The negative correlation between the measurement error and the

true hours worked coincides with the observation made by Bound et al. (1989) about the PSID.

We estimate the labor supply elasticities using the following model,

Hw
i = β0 + β1kidsi + β2edui + β′

3Xi + Ui, (21)

where kidsi is the number of kids aged under 18, edui includes two dummy variables, one for

completing secondary education and the other for higher than secondary education, and Xi is a

vector of control variables, including age, age-squared, a dummy of working in private sector, an

urban area dummy, and year dummies.

Table 2 shows the effects of the number of children and education on labor supply. We use

both the recalled weekly hours worked (β̂re) and the seven-day diary hours (β̂wk) as the dependent

variable. We also randomly draw one day for each respondent, then apply our impute estimator

(β̂im). For both married men and married women, β̂re are considerably different from β̂wk and β̂im,
40We also conduct the same simulations based only on the five weekdays in the DTUS. The results are qualitatively

the same and are reported in Table A.1 in Supplementary Appendix A.
41In the DTUS, the recalled weekly hours combine three questions in the survey: (1) hours worked in the previous

week; (2) usual weekly hours worked in the previous year; or (3) the seven-day diary hours. The answer to the next
question will be used if the respondents are unable to answer the previous question(s), but it is not indicated the
answer to which question was actually used for each individual. Probably due to this, many respondents in the DTUS
exhibit “zero measurement errors” in the recalled weekly hours.
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with different signs when significant. In the meantime, the latter two always have the same signs,

even though the magnitudes may differ. We conduct joint Hausman tests for the three coefficients

in the table between β̂re and β̂im, and between β̂wk and β̂im. For both married women and married

men, the Hausman tests reject the null hypotheses β̂re = β̂im but do not reject β̂wk = β̂im.

Based on the time use survey hours, both β̂wk and β̂im indicate that the effects on married

women’s labor supply are significantly negative for more children and significantly positive for

higher education. The recalled hours, on the other hand, produce β̂re estimates that are too noisy

to draw a conclusion.

5 Comparing Labor Supply Elasticity Estimates Using the ATUS and the CPS

In this section, we compare the labor supply elasticity estimates resulted from the CPS recalled

weekly hours and the ATUS daily diary hours.

5.1 Empirical Sample and Summary Statistics

The data are from the 2003–2017 ATUS (Hofferth et al., 2018). As mentioned in Section 2, the

ATUS sample is randomly drawn from the outgoing rotation group of the CPS respondents.42

Therefore, for every respondent in the ATUS, we have their answers to all CPS questions as well.

The sample used for our empirical analysis consists of hourly paid workers43 aged between of 25

and 54, whose wage rate is positive, and spouse earnings (if married) and total usual weekly hours

worked at current job reported in the last CPS interview are observed. The age restriction is to

avoid complications of schooling and retirement decisions. The hourly wage rate was trimmed at

percentiles 1 from below and 99 from above. After the trimming, the hourly wage in the sample

ranges from $5.2 to $67.8 for men and from $3.6 to $63.1 for women (2017 US dollars).

We argue that the discrepancies between the ATUS sample and the CPS sample are small, and

the reasons are as follows. First, if the respondent changed job (or changed employment status)

since the last CPS interview, then her answers to related CPS questions are updated at the time

of the ATUS interview, and we use the updated CPS hours whenever applied. This eliminates the
42The ATUS is conducted, on average, two to five months after their participation in the CPS.
43We exclude salaried workers because their hourly wage rate is much harder to measure. In a typical survey, the

hourly wage for salaried workers is total earnings during a particular period divided by the hours worked in that
period.
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discrepancy due to job or employment status change. Second, we include only the respondents who

answered both the CPS and the ATUS questions for themselves. This removes the discrepancies

due to someone speculating someone else’s CPS hours.44 Third, we verify that those respondents

who made their way into the ATUS sample are representative of the larger CPS sample,45 even

though the response rate of the ATUS might seem low to sharp eyes.46

Panel A of Table 3 provides means and standard deviations of the hours worked and hourly

wage rate, computed using both the CPS and the ATUS for the same respondents in our empirical

analysis sample. The CPS weekly hours worked we use is the number of hours per week that

the respondent usually works at his/her current job at the reported hourly wage rate.47 Here we

calculate a lower bound in the following way. It is reasonable to assume that the correlation between

the hours worked by the same person in two days, Hit and Hit′ , is nonnegative. By Hw
i =

∑7
t=1Hit,

we have Var(Hw
i ) ≥

∑7
t=1Var(Hit), where Var(Hit) can be readily estimated by the sample variance

of hours worked on day t in the ATUS. According to Table 3, men work slightly more hours than

women regardless of marital status and data source; married men work slightly more hours than

unmarried men, but married women work less than unmarried women; and for both genders, the

married have higher hourly wage rates than the unmarried.

5.2 Labor Supply Elasticities

We estimate the labor supply elasticities using the following linear regression model,

Hw
i = β0 + β1 lnwi + β2y

sp
i + β3kid5i + β4kid18i + β′

5Xi + Ui, (22)
44Every respondent in the ATUS records time diary for themselves, but the household head might answer the CPS

questions on behalf of other household members.
45We compare our empirical analysis sample (from the ATUS) to two larger CPS samples. The first is the 2003–2017

CPS sample (regardless of whether the respondent took part in the ATUS or not) after applying the same criterion
(age, trimming of hourly wage, etc.) used for our empirical analysis sample, and the other is the entire 2003-2017
CPS sample of hourly paid workers (all age, no trimming of hourly wage, etc.). In Supplementary Appendix A
(submitted together with this paper), Table A.3 tabulates the summary statistics of many key variables for all
these three samples, and all of the them are essentially the same across the three samples. Moreover, Table A.4 in
Supplementary Appendix A reports the summary statistics of weekly hours and the weekly labor supply elasticity
estimates based on the first larger CPS sample, and they are very close to the CPS based estimates reported in
Table 3 of this paper.

46The average response rate of the ATUS is roughly 50%, and that of the CPS is higher than 80%.
47By the potential outcome argument, the standard deviation of the ATUS imputed weekly hours worked is im-

possible to compute without ad hoc assumptions. This was first pointed out by Frazis and Stewart (2012).
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where lnwi is the natural log of hourly wage, yspi is the usual weekly earnings of i’s spouse (yspi = 0

for unmarried worker), kid5i is the number of children aged below 5, kid18i is the number of

children aged between 5 and 18, and Xi is a vector of control variables, including age, age-squared,

two education dummies, eight Census division dummies, a metropolitan area dummy, race dummies,

year dummies, occupation dummies and industry dummies. For hourly paid workers, ATUS directly

asks them the hourly wage rate. Note that our sample only consists of those individuals who

participated in both the ATUS and the CPS. As a result, despite the use of different measures of

hours worked, β̂re and β̂im are built on the same sample size.

In order to safeguard against the potential classical measurement error problem in wage and

spouse weekly earnings, we use wage deciles and spouse earning deciles as IVs.48 The reported

estimates of elasticities here are evaluated at the respective sample mean hours worked per week.

Panel B of Table 3 shows the estimation results by gender and marital status. For each ex-

planatory variable of interest, we report both β̂re, which is based on the CPS recalled weekly hours

and β̂im, which is based on the ATUS daily hours and our proposed imputation method. For the

CPS based β̂re, the standard errors are just the usual 2SLS standard errors. For the ATUS based

β̂im, however, we report the standard errors computed using eq. (18). We conduct joint Hausman

tests of the coefficients of the variables appearing in Panel B between the CPS and the ATUS. The

p-values are smaller than 0.1 for unmarried men and married women.49

Both the CPS and the ATUS indicate that women’s labor supply is more wage-elastic than

that of men, with the labor supply of married women having the largest wage elasticity (0.1589

and 0.1048 respectively). Compared to the CPS, the ATUS results in smaller own wage elasticities

across the board, and this agrees with what Barrett and Hamermesh (2019) found.50 From the

CPS to the ATUS, the reduction of own wage elasticities for men exceeds that for women, raising

the relative own wage elasticities for women.51 For married women, the ATUS yields much smaller
48We report OLS estimates in Table A.9 of the Supplementary Appendix A, and the results are almost the same,

both qualitatively and quantitatively. Our choice of IVs follows the suggestion by Juhn and Murphy (1997) and Blau
and Kahn (2007). The reason that wage (or spouse earning) decile serves as a valid IV for wage (or spouse earning)
in the presence of classical measurement errors is that we believe that the variation in the measurement error is not
big enough to alter the decile grouping for a substantial proportion of respondents.

49The empirical findings in Table 3 are very robust to choice of IVs, subsamples, or definition of “work” activities.
Robustness checks are provided in Supplementary Appendix A.

50Note that this pattern cannot be explained by respondents bunching their recalled weekly hours at 40, the usual
suspect of nonclassical measurement errors, which alone will result in lower elasticities from the CPS than from the
ATUS.

51Heckman (1993) argues that an important reason that married women display higher own wage elasticity than
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cross earning elasticity than implied by the CPS (−0.0579 v.s. −0.0943). For married men, the

CPS indicates that their labor supply is non-elastic with respect to spouse earnings (−0.0019),

consistent with previous findings in the literature (e.g., Blau and Kahn, 2007); notwithstanding,

the ATUS produces a much higher cross earning elasticity, and it is comparable with that of married

women (−0.0347).52

Our estimates based on the CPS are on par with those in the literature. Across roughly twenty

estimates surveyed by Blundell and MaCurdy (1999), the median own wage labor supply elasticity

is 0.08 for men and 0.78 for married women. For cross wage elasticities and conditional on having

positive hours, Devereux (2004) reports around −0.06 for men and around −0.5 for women in the

1980s. For married women, Blau and Kahn (2007) document robust and substantial decline in

married women’s labor supply elasticities from 1980s to 2000s. Their own wage elasticity fell from

roughly 0.77 in 1980 to roughly 0.36 in 2000. Their cross wage elasticity decreased from around

−0.33 in 1980 to around −0.19 in 2000. Since our sample covers the years 2003–2017, the fact that

all of our CPS based estimates have smaller absolute values than those for 2000 in Blau and Kahn

(2007) is consistent with the decline in the responsiveness of married women’s labor supply.53

Panel B of Table 3 also gives interesting elasticity estimates with respect to number of kids.

For married women, both surveys lead to very large and almost identical elasticities with respect

to number of younger kids for married women (−0.0897 and −0.0858); and yet the ATUS yields a

much smaller elasticity with respect to number of older kids than the CPS (−0.012 v.s. −0.0287).

For married men, the ATUS implies more elastic labor supply with respect to numbers of kids than

the CPS as well.

It is worth mentioning that there are many possible sources that result in different elasticity

estimates between the CPS and the ATUS (see Section 5 of Bound et al., 2001, for example),

and the mean-reverting error54 is only one of them. In fact, if the mean-reverting error was the

only reason for different estimates between the CPS and the ATUS, then all the ATUS elasticity

men and unmarried women is because their labor force participation decision is more wage-elastic, and that basing
the estimation only on those who work essentially compares married women’s higher extensive margin elasticity with
other groups’ intensive margin elasticities. Due to the lack of good instruments, we don’t correct for the sample
selection bias and acknowledge that our elasticity estimates are hybrid of both margins.

52The Hausman test of this single coefficient rejects the null hypothesis of equal coefficients between the CPS and
the ATUS.

53In addition, Blau and Kahn (2007) report men’s own wage elasticities around 0.1 without notable time trend.
54That is, people who work more hours tend to under-report, and those who work fewer hours tend to over-report.
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estimates (with respect to own wage, spouse earning, and number of kids) would all have had larger

absolute values than their CPS counterparts. This contradicts our empirical findings in Table 3,

where the ATUS indicates more elastic labor supply with respect to some regressors for some groups

and the opposite in other cases. The same patterns are very robust across various robustness checks

we conduct.55

6 Comments on Time Use Survey Design

For β̂im to have the same precision as β̂wk, how much larger the sample size have to be? To

get a rough idea, let’s assume homoskedasticity so that Ωim−wk and Ωwk simplify to Ωim−wk =[∑7
t=1(rt − 1)E(V 2

it)− 2
∑

1≤t<τ≤7E(VitViτ )
]
A−1 and Ωwk = E(U2

i )A
−1. Using the DTUS data,56

and we get Ê(U2
i ) = 146 and

∑7
t=1(rt−1)Ê(V 2

it)−2
∑

1≤t<τ≤7 Ê(VitViτ ) = 409. Hence the estimates

of the asymptotic variances of β̂wk and β̂im are V̂ar(β̂wk) = n−1146A−1 and V̂ar(β̂im) = n−1(146+

409)A−1.

If the correlation coefficients among the impute residuals of hours worked across different days

in the ATUS are the same as in the DTUS, then such back-of-envelop calculation implies that

compared to a survey that records the respondents’ activities for an entire week and enables the

use of the week estimator β̂wk, the number of respondents surveyed in the ATUS has to be roughly

3.8 times in order to get an impute estimator β̂im with the same precision. For survey designers,

this implies that if the average costs of following the same individuals for seven consecutive days is

higher than 3.8 times of interviewing them for one day, then the latter is justified from the efficiency

point of view.57

It is still worthwhile to do the former, at least in a smaller pilot sample. Knowledge about the

correlation among the daily hours can help determine the sampling scheme that gives rise to the

most efficient impute estimator. The reason is that Ωim−wk in eq. (12) as well as Ωim in eq. (14)

depends on the diary day sampling probabilities 1/rt (t = 1, . . . , 7). If efficiency of β̂im is our

primary concern, then we can minimize Ωim−wk (or equivalently, Ωim) by choosing rt subject to

the constraint
∑7

t=1 1/rt = 1. The optimal sampling probabilities are 1/rt = σt/
∑7

s=1 σs, where
55Reported in Table A.7 to Table A.10 in Supplementary Appendix A.
56The variables in Zi are the same as in Section 4.2, and the diary day sampling weights are in accordance with

the ATUS weights.
57In addition, the time use survey hours become less reliable as the period of survey gets longer.
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σ2
t ≡ E(V 2

it) and we assumed homoskedasticity for simplicity. That is, more weights should be

given to the days on which the hours worked exhibit larger variation among the population.

7 Conclusion

In this paper, we propose several intuitive estimators of weekly labor supply parameters using daily

hours data in time use surveys and recommend the impute estimator on the ground of efficiency

and robustness after carefully examining their asymptotic and finite sample properties. The impute

estimator is a simple modification of the usual 2SLS estimator, which imputes the dependent

variable (within each diary subsample) as well as the independent variables using the instruments.

We then proceed to illustrate the finite sample properties of all the estimators we consider using

the DTUS data, which track the respondents’ activities for an entire week, and hence is a valuable

benchmark. Multiple empirical findings are also drawn from the DTUS data. Finally, we compare

the estimated labor supply elasticities using the ATUS impute estimator and that using the CPS

recalled hours, and we are able to get a number of interesting empirical findings that are new in

the labor economics literature.
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Table 2: Weekly Labor Supply Elasticity Estimates (Hundredths): the DTUS

Married Men Married Women

β̂re β̂wk β̂im β̂re β̂wk β̂im

n of kids aged < 18 0.93 0.39 0.22 0.02 −16.81 −21.02
(0.41) (0.58) (1.16) (0.80) (1.72) (3.34)

Educ: completed 2ndry 2.14 −1.16 −7.43 −2.12 11.88 9.79
(1.12) (1.59) (2.99) (2.09) (4.47) (8.79)

Educ: above 2ndry 4.13 −2.06 −5.59 −0.86 22.68 21.53
(1.19) (1.68) (3.22) (2.48) (5.32) (10.51)

P value of joint Hausman test 0.00 0.11 0.00 0.53
n of Obs. 1746 1746 1746 835 835 835
R squared5 0.06 0.03 0.07 0.18 0.39 0.26

1 The other control variables are age, age-squared, a dummy of working in private sector, an urban
area dummy, and year dummies.

2 β̂re uses the recalled weekly hours; β̂wk uses the true diary weekly hours; β̂im uses the sample where
only one day is randomly chosen for each individual using the ATUS diary day sampling weights.

3 Standard errors are in parentheses.
4 We conduct the joint Hausman tests (i.e., the coefficients associated with the three regressors in the

table) regarding whether there are significant differences between β̂re and β̂im, and between β̂wk

and β̂im, respectively.
5 The R squared for impute estimator is the average R squared of the seven linear regression of daily

hours worked Hit = X′
iβt + Uit for t = 1, . . . , 7.
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Table 3: Weekly Labor Supply Elasticity Estimates: the CPS and the
ATUS

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked1 39.63 38.42 32.50 35.52
s.d. (6.13) (7.26) (10.43) (8.63)
ATUS Hours Worked on Diary Day 4.70 4.74 3.56 4.18
s.d. (4.55) (4.44) (4.00) (4.21)
ATUS Imputed Weekly Hours Worked 41.27 40.38 31.96 36.18
s.d. (lower bound)2 (9.57) (9.79) (9.26) (9.68)
Hourly Wage (2017 US dollars) 21.88 18.65 18.70 16.56

Panel B: Elasticities (hundredths)3

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 5.39 11.38 15.89 11.72
(0.89) (1.06) (1.26) (1.07)

Wage (ATUS) 1.47 4.71 10.48 8.14
(3.36) (3.25) (3.32) (3.30)

Spouse weekly earnings (CPS) −0.19 −9.43
(0.41) (0.77)

Spouse weekly earnings (ATUS) −3.47 −5.79
(1.62) (2.12)

Num. of kids age < 5 (CPS) −0.80 −8.58
(0.48) (0.82)

Num. of kids age < 5 (ATUS) −1.08 −8.97
(1.92) (2.11)

Num. of kids ages 5–18 (CPS) −0.00 −2.87
(0.26) (0.42)

Num. of kids ages 5–18 (ATUS) −0.44 −1.20
(1.12) (1.18)

R squared (CPS) 0.08 0.15 0.22 0.15
R squared (ATUS)6 0.16 0.24 0.17 0.17
p value of joint Hausman test 0.25 0.05 0.06 0.28
n of obs. 3889 3816 5602 5731
1 This is the number of hours per week that the respondent usually works at his/her current job at the

reported hourly wage rate.
2 See footnote 47 in the paper for more details.
3 The estimates based on the CPS recalled weekly hours are β̂re; the estimates based on the ATUS diary

day hours are β̂im.
4 The standard errors are in parentheses.
5 The elasticities are evaluated at the respective mean hours worked in each data source.
6 The R squared for impute estimator is the average R squared of the seven linear regression of daily

hours worked Hit = X′
iβt + Uit for t = 1, . . . , 7.

7 For each sample group, we conduct joint Hausman tests regarding whether there are significant differ-
ences between β̂re and β̂im.

8 The other control variables are age, age-squared, two education dummies, eight Census division dum-
mies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and industry
dummies.
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Figure 1: DTUS Weekly Hours vs. Randomly Drawn Daily Hours ×7

Note: The DTUS sample used here is pooled across the years 1985, 1990, 1995, 2000, and 2005. The sample includes only
full-time workers aged between 25 and 54 at the time of interview. We used the default sample weight of the DTUS, which
makes the weighted frequencies of the diaries within each age and sex group are evenly distributed in a week.

Figure 2: Measurement Errors in the DTUS Recalled Weekly Hours Worked

Panel A (left): scatter plot of the measurement errors in recalled weekly hours worked vṡṫhe DTUS weekly hours worked. Panel
B (right): kernel density of the measurement errors. In both, the measurement errors are obtained by subtracting the DTUS
weekly hours worked from the recalled weekly hours worked for the same individuals.
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(NOT FOR PUBLICATION)

Supplementary Appendices for

What Time Use Surveys Can (And Cannot) Tell Us About Labor Supply
Cheng Chou1 Ruoyao Shi2

January 2021

In Supplementary Appendix A, we report additional simulations, empirical analyses and ro-

bustness checks. In Supplementary Appendix B, we provide the proofs of the theorems and related

results in Section 3.2 of our main paper, Chou and Shi (2020). In Supplementary Appendix C, we

show the consequences of classical measurement errors in the ATUS.

A Additional Simulations, Empirical Results and Robustness Checks

In this appendix, we show additional simulation results, additional empirical results and various

robustness checks that complement our main paper, Chou and Shi (2020).

A.1 Density Plots Based Only on Weekdays in the DTUS

In Figure 1 of the main paper, the ATUS-type daily hours exhibit bimodal distributions since most

people work very little hours on weekends, if at all.3 Figure A.1 shows the results of a similar

experiment which takes the common five-day work schedule into account. We only keep those

individuals whose diary days are the workdays, and then multiple their ATUS-type daily hours by

5. As is shown in Figure A.1, even though the DTUS weekly hours and the scaled ATUS-type daily

hours have similar mode, their distributions differ notably, especially toward the left end. This

again highlights the impossibility results in Section 3.1 of the main paper.

A.2 Simulations Based Only on Weekdays in the DTUS

Table A.1 reports the results of simulation experiments that are very similar to those in Table 1.

For Table A.1, we only use the daily hours worked in the DTUS for the weekdays. The regressors Xi

1Cheng Chou: School of Business, University of Leicester, UK. Email: cchou@le.ac.uk.
2Ruoyao Shi: Department of Economics, UC Riverside, USA. Email: ruoyao.shi@ucr.edu.
3According to the U.S. Bureau of Labor Statistics, in 2017, 89% of full-time workers worked on an average weekday,

compared with 32.6% on an average weekend day.

1

mailto:cchou@le.ac.uk
mailto:ruoyao.shi@ucr.edu


and the IVs Zi are generated from the n× 5 matrix with elements HDTUS
it (t = 2, . . . , 6), denoted

by HDTUS,5, using the same design described in Section 4.1. To generate fictitious ATUS-type

samples, we randomly choose only one day from Monday to Friday for each individual using equal

sampling weights.

Just like in Table 1, the week estimator β̂wk is our infeasible benchmark, which has virtually

no biases and the smallest variances. The efficiency gain of the impute estimator β̂im relative to

the pool estimator β̂pool and the day estimator β̂day becomes less pronounced. This is likely due to

the fact that the first principal component of HDTUS captures the dichotomy between weekdays

and weekends, and once that is removed, the daily variation of hours worked drops dramatically.4

Besides, the ATUS assigns equal sampling weights to the weekdays. As we explained in Remark 7

in Chou and Shi (2020), if Hi2 = · · · = Hi6 and r2 = · · · = r6, then Ωpool−im = 0 and there will be

no difference in the asymptotic efficiency between β̂im and β̂pool. Our additional simulation results

here verify our theoretical prediction in the main paper.

A.3 Coefficient Estimates in the DTUS Weekly Labor Supply Regression

In Table 2 of the main paper, we report the weekly labor supply elasticity estimates using the

DTUS. Table A.2 reports the coefficient estimates in the weekly labor supply regression equation

shown in eq. (4), and the elasticity estimates reported in Table 2 are evaluated at the sample mean

hours.

A.4 Coefficient Estimates in the ATUS Weekly Labor Supply Regression

In Table 3 of the main paper, we report the weekly labor supply elasticity estimates using the

ATUS. Table A.5 reports the coefficient estimates in the weekly labor supply regression equation

shown in eq. (22), and the elasticity estimates reported in Table 3 are evaluated at respective sample

means based on these coefficients and the sample mean hours.
4Indeed, the first principal component of HDTUS,5 assigns the weights β1 = 0.4389, β2 = 0.4560, β3 = 0.4580,

β4 = 0.4531 and β5 = 0.4294 to its columns, which correspond to Monday to Friday, respectively; i.e., each weekday
contributes roughly equally to the first principal component.
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A.5 Representativeness of the ATUS Sample

The ATUS is designed to be a random subsample of those who recently complete their participation

in the CPS. We compare the ATUS sample against the CPS sample. Sample means and sample

standard deviations of the key variables used in the empirical studies are reported in Table A.3.

The ATUS sample (first column) is the one used in the empirical studies in our main paper. The

CPS sample (middle column) is the entire CPS 2003-2017 sample after the same sample selection

criterion (hourly paid workers aged between of 25 and 54, whose wage rate is positive, and spouse

earnings (if married) and total usual weekly hours worked at all jobs reported in the CPS are

observed The entire CPS sample (last column) includes the respondents whose hourly wage or

spouse weekly earnings is missing. None of the key variable summary statistics differ significantly

among the three samples.

The elasticity estimates in Table 3 of the main paper are based on the sample in the first

column of Table A.3. Using the sample of second column of Table A.3, we estimate the labor

supply elasticities similar to the main paper. We report such estimates in Table A.4. Comparing

them with the CPS results in Table 3 in the main paper, we find no notable differences.

Therefore, it is safe to conclude that the ATUS sample is a representative subsample of the

CPS, which implies that the differences between the ATUS and the CPS elasticity estimates are

more likely due to the nonclassical measurement errors in the CPS than due to the composition of

the ATUS sample.

Moreover, the ATUS sample does not exhibit strong seasonal fluctuations over a year, whether

as a whole or within each occupation. In Table A.6, we categorize the ATUS sample into different

occupations and months. First, the entire ATUS sample is very balanced over a year, with people

surveyed in all months having roughly equal proportions. Second, within each occupation, the

ATUS also surveys approximately same numbers of people in every month. Third, among the nine

occupation categories, not a single occupation bears overwhelming weights. So the empirical results

in the main paper are not likely to be driven by anomaly in a single occupation or a single month.

3



A.6 Robustness Checks of the Empirical Results in Section 5

In Section 5 of the main paper, we estimate labor supply elasticities using the ATUS daily hours

and compare the estimates with those obtained using the CPS recalled weekly hours. The ATUS

estimates reported in Table 3 of the main paper uses the “work” hours on all jobs (activity code:

050100) for all the occupations in the ATUS.

In this section, we conduct four robustness checks. The first robustness check, reported in

Table A.7, restricts to the three occupations with the most observations; they are computer and

mathematical science, healthcare support, and office and administrative support occupations. The

second robustness check, reported in Table A.8, uses “work” and “work-related” hours (activity

codes: 050100 and 050200) for all the occupations in the ATUS.5 The third robustness check,

reported in Table A.9, estimates the elasticities using the OLS, without correcting the potential

measurement issues in own hourly wage and spouse weekly earnings (using their respective decile

as IVs). Comparing Tables A.7 to A.9 here with Table 3 of the main paper, we see that none of

the estimates change much, neither qualitatively nor quantitatively.

The fourth robustness check, reported in Table A.10, uses survey year-month group indicators

as IVs.6 Angrist (1991) proposes the use of group classification variable that is independent from

the error term as IV. He also proves that the resulting 2SLS estimator is a generalization of the

Wald estimator in the treatment effect literature that is frequently used in binary treatment and

binary IV cases. The identification power of such 2SLS estimators comes from the variation in group

means, and it requires that the individual deviation from group means to be uncorrelated with the

IVs. Since we have no reason to believe that the error term in the weekly labor supply eq. (4) is

systematically correlated with survey year or survey month, the survey year-month dummies satisfy

the exclusion restriction. On the other hand, the correlation between survey year (or survey month)

and log wage (or spouse earnings) is probably weak, which may lead to inflated standard errors

and sizable finite sample bias. Compare Table A.10 with Table 3 in the main paper, the standard

errors of the elasticity estimates (Panel B) rise remarkably. Among those elasticity estimates which

remain significant – CPS own wage for all groups, CPS spouse earning and older kids for married
5Examples of work-related activities here include attending social events, attending sporting events, and eating or

drinking with bosses, co-workers or clients, etc.
6Our sample contains respondents in 15 years (2003-2017), which together with 12 months result in 180 group

indicators.
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women, CPS and ATUS younger kids for married women – neither sign nor magnitude changes

much. This shows that our labor supply elasticity estimates are not very sensitive to the choice of

IVs.

B Proofs of the Theorems in Section 3.2

Proof of Theorem 1. First we show the identification of β if Hw
i were observed, as it will be in-

structive for our discussion based on the ATUS data HATUS
i . If the true weekly hours worked Hw

i

were observed, then the identification of the p-dimensional parameter vector β is just the usual

argument for 2SLS (i.e., generalized method of moments) estimators. Formally, β is identified if

the following q-dimensional moment conditions

E(ZiUi) = E[Zi(H
w
i −X ′

iβ)] = 0 ⇐⇒ E(ZiH
w
i ) = E(ZiX

′
i)β (B.1)

have a unique solution of β, which is true if q ≥ p, and the rank of the q × p matrix E(ZiX
′
i) is

p (i.e., Assumption 3). Provided that E(ZiZ
′
i) is nonsingular (part of Assumption 3), eq. (B.1) is

equivalent to

E(XiZ
′
i)[E(ZiZ

′
i)]

−1E(ZiH
w
i ) = E(XiZ

′
i)[E(ZiZ

′
i)]

−1E(ZiX
′
i)β, (B.2)

and

β =
(
E(XiZ

′
i)[E(ZiZ

′
i)]

−1E(ZiX
′
i)
)−1

E(XiZ
′
i)[E(ZiZ

′
i)]

−1E(ZiH
w
i ) (B.3)

is the unique solution of eq. (B.2). β̂wk is to replace the expectations in eq. (B.3) by respective

sample means.

Next we consider the case where only HATUS
i =

∑7
t=1 ditHit is observed. The identification of

β is still based on the same moment conditions in eq. (B.1), but the only problem now is that the

ATUS data are not informative about the term E(ZiH
w
i ) in eq. (B.3). Since the expression of β

in eq. (B.3) is the unique solution of eq. (B.2), the identification of β will be proved if we can find

equivalent expressions of eq. (B.3) that have sample counterparts in the ATUS data. The rest of

5



our proof shows that. Under the potential outcome framework, we have

β =
(
E(XiZ

′
i)[E(ZiZ

′
i)]

−1E(ZiX
′
i)
)−1

E(XiZ
′
i)[E(ZiZ

′
i)]

−1
7∑

t=1

E(ZiHit) (B.4)

=
(
E(XiZ

′
i)[E(ZiZ

′
i)]

−1E(ZiX
′
i)
)−1

E(XiZ
′
i)

7∑
t=1

[E(ZiZ
′
i|dit = 1)]−1E(ZiHit|dit = 1) (B.5)

=
(
E(XiZ

′
i)[E(ZiZ

′
i)]

−1E(ZiX
′
i)
)−1

E(XiZ
′
i)[E(ZiZ

′
i)]

−1
7∑

t=1

E(rntdit)E(ZiHit)

=
(
E(XiZ

′
i)[E(ZiZ

′
i)]

−1E(ZiX
′
i)
)−1

E(XiZ
′
i)[E(ZiZ

′
i)]

−1
7∑

t=1

E(rntditZiHit)

=
(
E(XiZ

′
i)[E(ZiZ

′
i)]

−1E(ZiX
′
i)
)−1

E(XiZ
′
i)[E(ZiZ

′
i)]

−1
7∑

t=1

E(rntZiHit|dit = 1) (B.6)

=

7∑
t=1

(
E(XiZ

′
i|dit = 1)[E(ZiZ

′
i|dit = 1)]−1E(ZiX

′
i|dit = 1)

)−1

× E(XiZ
′
i|dit = 1)[E(ZiZ

′
i|dit = 1)]−1E(ZiHit|dit = 1), (B.7)

where eq. (B.4) holds by the definition of Hw
i , eqs. (B.5) to (B.7) hold by Assumption 1 and that

E(rntdit) = 1. Equation (B.5) is the population counterpart of β̂im, eq. (B.6) is the population

counterpart of β̂pool, and eq. (B.7) is the population counterpart of β̂day, all of which are now

estimable using the ATUS data.

Proof of Theorem 2. First, we show the consistency of β̂wk:

β̂wk − β = A−1
n X ′PzU = A−1

n BnC
−1
n (Z ′U/n)

p.−→ A−1BC−1E(ZiUi) = 0.

In fact, this is a standard result for instrumental variable estimators.

Second, we show the consistency of β̂im. Consider the difference (β̂im − β̂wk) using their defini-

tions:

β̂im − β̂wk = (X ′PzX)−1X ′Pz

[
7∑

t=1

Z(Z ′DtZ)−1Z ′DtHt −Hw

]

= (X ′PzX)−1X ′Pz

[
7∑

t=1

Z(Z ′DtZ)−1Z ′DtHt − Pz

7∑
t=1

Ht

]
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=

7∑
t=1

(X ′PzX)−1X ′PzZ[(Z ′DtZ)−1Z ′DtHt − (Z ′Z)−1Z ′Ht]

=

7∑
t=1

(X ′PzX)−1X ′Z[(Z ′DtZ)−1Z ′DtHt − (Z ′Z)−1Z ′Ht].

Using the linear projection eq. (10), we have

β̂im − β̂wk =
7∑

t=1

A−1
n Bn

[(
1

nt
Z ′DtZ

)−1 1

nt
Z ′DtVt −

(
1

n
Z ′Z

)−1 1

n
Z ′Vt

]
. (B.8)

Define

Cnt = Z ′DtZ/nt.

Following from the law of large numbers, A, B and C are the probability limit of An, Bn, and Cn

(also Cnt) as n → ∞, respectively. By the definition of An, Bn, Cn and Cnt , we have

β̂im − β̂wk =
7∑

t=1

A−1
n Bn

[
C−1
nt

1

nt
Z ′DtVt − C−1

n

1

n
Z ′Vt

]
p.−→

7∑
t=1

A−1BC−1[E(ZiditVit)− E(ZiVit)]

=

7∑
t=1

A−1BC−1[E(ZiVit)E(dit)− E(ZiVit)]

= 0,

(B.9)

because E(ZiVit) = 0. Since β̂wk
p.−→ β and β̂im − β̂wk

p.−→ 0, we conclude that β̂im
p.−→ β.
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Third, we show the consistency of β̂pool. By the definition of An, Bn, Cn and Cnt , we have

β̂pool − β̂wk =
7∑

t=1

A−1
n BnC

−1
n

Z ′(rntDt − I)Ht

n

p.−→ A−1BC−1
7∑

t=1

Z ′(rtDt − I)Ht

n

p.−→ A−1BC−1
7∑

t=1

E((rtdit − 1)ZiHit)

= A−1BC−1
7∑

t=1

E(rtdit − 1)E(ZiHit)

= 0,

(B.10)

where the second line holds because rnt
p.−→ rt, and the last equality holds since E(rtdit − 1) = 0.

Combined with the result that β̂wk
p.−→ β, this implies that β̂pool

p.−→ β.

Fourth, we show the consistency of β̂day. The weekly labor supply equation in eq. (4) can be

re-written as the sum of seven daily labor supply equations in eq. (7), with

β =
7∑

t=1

βt and Ui =
7∑

t=1

Uit.

We then can re-write the day estimator as

β̂day =
7∑

t=1

(X ′PztX)−1X ′PztHt

=
7∑

t=1

(X ′PztX)−1X ′Pzt(Xβt + Ut)

=
7∑

t=1

βt +
7∑

t=1

(X ′PztX)−1X ′PztUt

= β +
7∑

t=1

(X ′PztX)−1X ′PztUt.

(B.11)

Simply by the law of large numbers, continuous mapping theorem, and the definition of Pzt, we
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have

β̂day − β =

7∑
t=1

(X ′PztX)−1X ′PztUt

=

7∑
t=1

(
X ′PztX

nt

)−1X ′DtZ

nt

(
Z ′DtZ

nt

)−1Z ′DtUt

nt

p.−→
7∑

t=1

A−1BC−1E(ZiUit)

= A−1BC−1E
[
Zi

7∑
t=1

Uit

]
= A−1BC−1E(ZiUi)

= 0.

(B.12)

This completes the proof.

Proof of Theorem 3. We have

√
n(β̂wk − β) = A−1 1√

n
X ′PzU + op(1),

which is asymptotically normal with mean zero and variance

Ωwk = A−1BC−1E(U2
i ZiZ

′
i)C

−1B′A−1,

This completes the proof of Theorem 3. Again, this is a standard result for instrumental variable

estimators.

Proof of Theorem 4. To show (i), we consider the decomposition

√
n(β̂im − β) =

√
n(β̂im − β̂wk) +

√
n(β̂wk − β).

Since the asymptotic variance of
√
n(β̂wk − β) is given by Theorem 3, the key to finding the

asymptotic distribution of
√
n(β̂im−β) is therefore to compute the asymptotic variance of

√
n(β̂im−
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β̂wk) and
√
n(β̂wk − β), as well as their asymptotic covariance. Recall that eq. (B.8) implies

√
n(β̂im − β̂wk) =

7∑
t=1

A−1
n Bn

√
n

[(
1

nt
Z ′DtZ

)−1 n

nt

1

n
Z ′DtVt −

(
1

n
Z ′Z

)−1 1

n
Z ′Vt

]

=

7∑
t=1

A−1
n Bn

[
C−1
nt

rnt
1√
n
Z ′DtVt − C−1

n

1√
n
Z ′Vt

]
.

(B.13)

Because n−1/2Z ′DtVt = Op(1) and n−1/2Z ′Vt = Op(1), we have

√
n(β̂im − β̂wk) = A−1BC−1

7∑
t=1

1√
n
Z ′(rtDt − In)Vt + op(1). (B.14)

The key is then the asymptotic distribution of

7∑
t=1

1√
n
Z ′(rtDt − In)Vt =

7∑
t=1

1√
n

n∑
i=1

(rtdit − 1)ZiVit.

Because dit ⊥⊥ (Z,Ht) and E(rtdit − 1) = 0, we have that E[(rtdit − 1)ZiVit] = 0. Moreover, we

have

E
[
(rtdit − 1)ZiVitViτZ

′
i(rτdiτ − 1)

]
= E[(rtdit − 1)(rτdiτ − 1)]E

(
ZiVitViτZ

′
i

)
.

It can be shown that

E[(rtdit − 1)(rτdiτ − 1)] =


rt − 1, t = τ,

−1, t ̸= τ.

(B.15)

We hence have

Var((rtdit − 1)ZiVit) = (rt − 1)E(ZiVitVitZ
′
i),

and for t ̸= τ ,

Cov((rtdit − 1)ZiVit, (rτdiτ − 1)ZiViτ ) = −E(ZiVitViτZ
′
i).

From eq. (B.14), we conclude that
√
n(β̂im− β̂wk) is asymptotically normal with mean zero and
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variance

Ωim−wk ≡ A−1BC−1
[ 7∑
t=1

(rt − 1)E(ZiVitVitZ
′
i)− 2

∑
1≤t<τ≤7

E(ZiVitViτZ
′
i)
]
C−1B′A−1;

We then proceed to compute the covariance between
√
n(β̂im − β̂wk) and

√
n(β̂wk − β). Note

that we have shown E
(√

n(β̂im − β̂wk)
)
= op(1) and E

(√
n(β̂wk − β)

)
= op(1). In addition, we

have

E
(√

n(β̂im − β̂wk)
√
n(β̂wk − β)

)
= A−1BC−1E

(
7∑

t=1

n−1Z ′(rtDt − In)VtU
′PzX

)
A−1 + op(1)

= A−1BC−1
7∑

t=1

E
(
n−1Z ′(rtDt − In)VtU

′PzX
)
A−1 + op(1)

= A−1BC−1
7∑

t=1

E
(
n−1Z ′E((rtDt − In)VtU

′PzX | Z)
)
A−1 + op(1)

= A−1BC−1
7∑

t=1

E
(
n−1Z ′E(rtDt − In)E(VtU

′PzX | Z)
)
A−1 + op(1),

where the last equality holds because the diary day is completely random, i.e., dit (and hence Dt)

is independent from everything else. This, combined with

E(rtDt − In) = 0

implies

E
(√

n(β̂im − β̂wk)
√
n(β̂wk − β)

)
= op(1).

As a result,

Cov
(√

n(β̂im − β̂wk),
√
n(β̂wk − β)

)
= op(1).

We conclude that the asymptotic variance of the impute estimator equals

Ωim = Ωwk +Ωim−wk,
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This completes the proof of (i).

To show (ii), we follow similar steps as for (i). We decompose

√
n(β̂pool − β) =

√
n(β̂pool − β̂im) +

√
n(β̂im − β),

where we only need to find the asymptotic variance of
√
n(β̂pool−β̂im) and the asymptotic covariance

between the two terms. First, we have

√
n(β̂pool − β̂im) =

√
n(X ′PzX)−1X ′Z

7∑
t=1

[
(Z ′Z)−1rntZ

′DtHt − (Z ′DtZ)−1Z ′DtHt]

= A−1
n Bn

7∑
t=1

(
C−1
n − C−1

nt
)
1√
n
rntZ

′DtHt.

In light of the linear projection eq. (10) of Ht, we have

√
n(β̂pool − β̂im) = A−1

n Bn

7∑
t=1

(C−1
n − C−1

nt
)
1√
n
rntZ

′Dt

(
Zαt + Vt)

= A−1
n Bn

7∑
t=1

(C−1
n − C−1

nt
)
1√
n
rntZ

′DtZαt + op(1)

= A−1
n Bn

7∑
t=1

(
C−1
n

1√
n
Z ′rntDtZαt −

√
nαt

)
+ op(1)

= A−1
n Bn

7∑
t=1

(
C−1
n

1√
n
Z ′rntDtZαt −

√
nC−1

n

Z ′Z

n
αt

)
+ op(1)

= A−1
n BnC

−1
n

7∑
t=1

(
1√
n
Z ′rntDtZαt −

1√
n
Z ′Zαt

)
+ op(1)

= A−1BC−1
7∑

t=1

1√
n
Z ′(rtDt − In)Zαt + op(1), (B.16)

where the second equality holds since C−1
n −C−1

nt
= op(1), n−1/2rntZ

′DtVt = Op(1), and C−1
nt

Z ′DtZ/nt =

In, and the last equality holds by the definition of Cn and Cnt . It follows straightforward that
√
n(β̂pool − β̂im) is asymptotically normal with some asymptotic variance Ωpool−im. To calculate

Ωpool−im, let

δit = (rtdit − 1)Ziα
′
tZi,
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and rewrite
√
n(β̂pool − β̂im) = A−1BC−1

7∑
t=1

1√
n

n∑
i=1

δit + op(1).

Using eq. (B.15), we can show that

Var(δit) = (rt − 1)E(Ziα
′
tZiZ

′
iαtZ

′
i),

and

Cov(δit, δiτ ) = −E(Ziα
′
tZiZ

′
iα

′
τZ

′
i).

As a result,

Ωpool−im = A−1BC−1
[ 7∑
t=1

(rt − 1)E(Ziα
′
tZiZ

′
iαtZ

′
i)− 2

∑
1≤t<τ≤7

E(Ziα
′
tZiZ

′
iα

′
τZ

′
i)
]
C−1B′A−1.

(B.17)

Second, we consider the asymptotic covariance between
√
n(β̂pool − β̂im) and

√
n(β̂im − β). By

the definition of Viτ in the linear projection eq. (10), Zi and Viτ (τ = 1, . . . , 7) are orthogonal with

each other. This implies that for any 1 ≤ t ≤ τ ≤ 7,

Cov((rtdit − 1)Ziα
′
tZi, (rτdiτ − 1)ZiViτ ) = 0.

This further implies that
√
n(β̂pool − β̂im) and

√
n(β̂im − β̂wk) are asymptotically uncorrelated.

Furthermore, using the same argument as in the proof of (i), one can show that
√
n(β̂pool − β̂im)

and
√
n(β̂wk − β) are asymptotically uncorrelated. Together they imply that

√
n(β̂pool − β̂im) and

√
n(β̂im − β) are asymptotically uncorrelated.

To summarize, we have shown that the asymptotic variance of
√
n(β̂pool − β) equals to

Ωpool = Ωpool−im +Ωim.

Note that since Ωpool is positive definite, it implies that β̂im is asymptotically more efficient than

β̂pool. This completes the proof of (ii).
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Part (iii) follows from writing Var(
√
n(β̂im − β̂wk)) as the following sum,

Var(
√
n(β̂im − β)) + Var(

√
n(β̂wk − β))− 2Cov(

√
n(β̂im − β),

√
n(β̂wk − β)).

Because we have shown E(
√
n(β̂im − β̂wk)

√
n(β̂wk − β)) = op(1), we have that

E(
√
n(β̂im − β)

√
n(β̂wk − β)) = Var(

√
n(β̂wk − β)) + op(1).

We hence conclude that Var(
√
n(β̂im − β̂wk)) = Var(

√
n(β̂im − β)) − Var(

√
n(β̂wk − β)). The rest

of part (iii) follows immediately.

Proof of Theorem 5. To prove (i), first note that by the definition of Ui and the “H first stage”,

we have

Ui ≡ Hw
i −X ′

iβ =

7∑
t=1

Hit −X ′
iβ =

7∑
t=1

(Z ′
iαt + Vit)−X ′

iβ =

7∑
t=1

Vit + Z ′
i

7∑
t=1

αt −X ′
iβ. (B.18)

Therefore, we have

E(U2
i ZiZ

′
i) =E

( 7∑
t=1

Vit

)2

ZiZ
′
i

+ E

(Z ′
i

7∑
t=1

αt −X ′
iβ

)2

ZiZ
′
i


+ 2E

[(
7∑

t=1

Vit

)(
Z ′
i

7∑
t=1

αt −X ′
iβ

)
ZiZ

′
i

]

=
7∑

t=1

E(V 2
itZiZ

′
i) + 2

∑
1≤t<τ≤7

E(VitViτZiZ
′
i)

+ E

(Z ′
i

7∑
t=1

αt −X ′
iβ

)2

ZiZ
′
i

+ 2E

[(
7∑

t=1

Vit

)(
Z ′
i

7∑
t=1

αt −X ′
iβ

)
ZiZ

′
i

]
.

(B.19)

We can then replace E(U2
i ZiZ

′
i) in the middle of Ωwk in eq. (11) by eq. (B.19). Part (i) follows

by adding Ωwk and Ωim−wk together, which are given in eq. (11) and eq. (12), respectively. Since

Ωim−wk involves terms like E(ZiVitViτZ
′
i), it may seem at a glance that Ωim depends on the

correlations among Vit and Viτ for t ̸= τ . But the proof here shows that these terms from Ωwk and

Ωim−wk cancel with each other.
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Part (ii) can be proven by the same argument as for part (i), i.e., by expanding the term

E

[(
Z ′
i

∑7
t=1 αt −X ′

iβ
)2

ZiZ
′
i

]
in Ωim and adding it together with Ωpool−im in eq. (13).

Proof of Theorem 6. Part (i). For every t = 1, . . . , 7, it follows from a standard result for instru-

mental variable estimators that

√
nt(β̂t − βt)

d.−→ N(0, A−1BC−1E(U2
itZiZ

′
i)C

−1B′A−1),

which implies that if we normalize by
√
n instead of √nt, we have

√
n(β̂t − βt)

d.−→ N(0, rtA
−1BC−1E(U2

itZiZ
′
i)C

−1B′A−1).

Moreover, note that β̂t only uses the data on those individuals whose diary day is t. Since the

individuals are drawn independently, β̂t is independent of β̂τ for any t ̸= τ . This implies that the

asymptotic variance of the day estimator β̂day is

Ωday = A−1BC−1

[
7∑

t=1

rtE(U2
itZiZ

′
i)

]
C−1B′A−1.

This proves eq. (16).

To prove part (ii), we first derive an alternative expression for Ωday. Similar to eq. (B.18), we

can decompose Uit in a similar manner:

Uit ≡ Hit −X ′
iβt = Vit +

(
Z ′
iαt −X ′

iβt
)
,

which implies that

E(U2
itZiZ

′
i) = E(V 2

itZiZ
′
i) + E

[(
Z ′
iαt −X ′

iβt
)2

ZiZ
′
i

]
+ 2E

[
Vit

(
Z ′
iαt −X ′

iβt
)
ZiZ

′
i

]
,

which combined with eq. (16) in turn implies that

Ωday = A−1BC−1

{
7∑

t=1

rtE(V 2
itZiZ

′
i) +

7∑
t=1

rtE
[(
Z ′
iαt −X ′

iβt
)2

ZiZ
′
i

]
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+2

7∑
t=1

rtE
[
Vit

(
Z ′
iαt −X ′

iβt
)
ZiZ

′
i

]}
C−1B′A−1. (B.20)

Subtracting Ωim in eq. (14) from Ωday in eq. (B.20), we have

Ωday −Ωim = A−1BC−1(Ωa
day−im +Ωb

day−im)C−1B′A−1,

where

Ωa
day−im ≡

7∑
t=1

rt E[(Z
′
iαt −X ′

iβt)
2ZiZ

′
i]− E

[(
Z ′
i

7∑
t=1

αt −X ′
iβ

)2

ZiZ
′
i

]
,

Ωb
day−im ≡ 2

7∑
t=1

rt E[Vit(Z
′
iαt −X ′

iβt)ZiZ
′
i]− 2E

[( 7∑
t=1

Vit

)(
Z ′
i

7∑
t=1

αt −X ′
iβ

)
ZiZ

′
i

]
.

We will show that Ωa
day−im is a variance-covariance matrix, Ωb

day−im is a cross-covariance matrix,

and their sum is also a cross-covariance matrix. Whether or not Ωa
day−im + Ωb

day−im is positive

definite depends on the covariance between (Ui1, . . . , Ui7)
′ and (Vi1, . . . , Vi7)

′.

The proof relies on two observations:

β =

7∑
t=1

βt and Z ′
iαt −X ′

iβt = Z ′
iαt −Hit +Hit −X ′

iβt = Uit − Vit.

Because we will repeatedly use Uit − Vit, we denote ηit ≡ Uit − Vit. Using these two observations,

we first can write Ωa
day−im as follows,

Ωa
day−im =

7∑
t=1

E(η2itZiZ
′
i) +

7∑
t=1

(rt − 1)E(η2itZiZ
′
i)− E

[( 7∑
t=1

ηit

)2
ZiZ

′
i

]

=
7∑

t=1

E(η2itZiZ
′
i) +

7∑
t=1

(rt − 1)E(η2itZiZ
′
i)−

7∑
t=1

E(η2itZiZ
′
i)− 2

∑
1≤t<τ≤7

E(ηitηiτZiZ
′
i)

=

7∑
t=1

(rt − 1)E(η2itZiZ
′
i)− 2

∑
1≤t<τ≤7

E(ηitηiτZiZ
′
i)

= E

[( 7∑
t=1

(rtdit − 1)ηitZi

)( 7∑
t=1

(rtdit − 1)ηitZ
′
i

)]
, (B.21)
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where the last equality holds by Assumption 1 and the following equalities:

E[(rtdit − 1)2] = E(r2t d
2
it) + 1− 2E(rtdit) = E(r2t dit) + 1− 2 = rt − 1 = rt − 1 (B.22)

E[(rtdit − 1)(rτdiτ − 1)] = E(rtrτditdiτ )− E(rtdit)− E(rτdiτ ) + 1 = −1. (B.23)

Similarly, we have

1

2
Ωb

day−im =
7∑

t=1

E(VitηitZiZ
′
i) +

7∑
t=1

(rt − 1)E(VitηitZiZ
′
i)− E

[( 7∑
t=1

Vit

)( 7∑
t=1

ηit

)
ZiZ

′
i

]

=
7∑

t=1

E(VitηitZiZ
′
i) +

7∑
t=1

(rt − 1)E(VitηitZiZ
′
i)−

7∑
t=1

E(VitηitZiZ
′
i)−

∑
t̸=τ

E

[
VitηiτZiZ

′
i

]

=

7∑
t=1

(rt − 1)E(VitηitZiZ
′
i)−

∑
t̸=τ

E

[
VitηiτZiZ

′
i

]

= E

[( 7∑
t=1

(rtdit − 1)VitZi

)( 7∑
t=1

(rtdit − 1)ηitZ
′
i

)]

= Cov

( 7∑
t=1

(rtdit − 1)VitZi,
7∑

t=1

(rtdit − 1)ηitZi

)
, (B.24)

where the fourth equality holds again by Assumption 1, eq. (B.22) and eq. (B.23); the last equality

holds since Zi are IVs which are uncorrelated with the zero mean ηit.

Next, we derive Ωa
day−im +Ωb

day−im using eq. (B.21) and eq. (B.24). Note that ηit = Uit − Vit,

hence ηit + 2Vit = Uit + Vit. We have

Ωa
day−im + 2

(1
2
Ωb

day−im

)
= E

[( 7∑
t=1

(rtdit − 1)ηitZi

)( 7∑
t=1

(rtdit − 1)ηitZ
′
i

)]

+ E

[( 7∑
t=1

(rtdit − 1)2VitZi

)( 7∑
t=1

(rtdit − 1)ηitZ
′
i

)]

= E

[( 7∑
t=1

(rtdit − 1)(Uit + Vit)Zi

)( 7∑
t=1

(rtdit − 1)(Uit − Vit)Z
′
i

)]

= Cov

(( 7∑
t=1

(rtdit − 1)(Uit + Vit)Zi

)
,
( 7∑
t=1

(rtdit − 1)(Uit − Vit)Zi

))
.

Again, by Assumption 1, eq. (B.22) and eq. (B.23), we can expand the covariance term in the last

17



line and conclude that

Ωday −Ωim = A−1BC−1

[ 7∑
t=1

(rt − 1)E((Uit + Vit)(Uit − Vit)ZiZ
′
i)

−
∑
t̸=τ

E((Uit + Vit)(Uiτ − Viτ )ZiZ
′
i)

]
C−1B′A−1.

This completes the proof of Theorem 6.

Remark 10 (Relative efficiency of β̂day (cont’d)). To demonstrate that the sign of Ωday − Ωim

in Theorem 6 is indeterminate in general, we note that under homoskedasticity and fixed effect

assumptions, the difference between the asymptotic variances of β̂day and β̂im in eq. (17) can be

simplified to

Ωday−Ωim =

[
−

7∑
t=1

(rt−1)(2β′
tE(eici)+β′

tE(eie
′
i)βt)+

∑
t̸=τ

(2β′
τE(eici)+β′

τE(eie
′
i)βt)

]
A−1, (B.25)

where ci is the fixed effect defined below, and ei is the error term in the first stage regression

of Xi on IVs Zi. The term −β′
tE(eie

′
i)βt is non-positive; but for t ̸= τ , the terms −2β′

tE(eici),

2β′
τE(eici) and β′

τE(eie
′
i)βt could be positive or negative and their absolute values might be larger or

smaller than that of the former. So whether or not β̂day is asymptotically more efficient than β̂im

is indeterminate and it depends on the sign of βt (t = 1, . . . , 7) and the correlation between ei and

ci. Inspired by an anonymous referee, we conducted simple simulation experiments to demonstrate

both Ωday − Ωim > 0 case and the opposite case. These results are not reported but available upon

request.

In the rest of this remark, we will prove eq. (B.25). First, assume homoskedasticity so that we

can move ZiZ
′
i out and rewrite E((Uit + Vit)(Uiτ − Viτ )ZiZ

′
i) = E((Uit + Vit)(Uiτ − Viτ ))E(ZiZ

′
i)

(t = τ or t ̸= τ).

Recall the daily regression models (t = 1, . . . , 7)

Hit = X ′
iβt + Uit,
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as well as the reduced form equations for Xi and Hit

Xi = π′Zi + ei,

Hit = (π′Zi + ei)
′βt + Uit = Z ′

i πβt︸︷︷︸
αt

+ e′iβt + Uit︸ ︷︷ ︸
Vit

,

where we know that E(Ziei) = 0, E(ZiUit) = 0 so E(ZiVit) = 0, but E(eiUit) ̸= 0. In order to

capture dependence among daily hours worked determined by unobserved factors, we postulate a

common fixed effect structure

Uit = ci + ξit,

which in turn implies that Vit = e′iβt + ci + ξit. So for any t, τ = 1, . . . , 7, we have

E((Uit + Vit)(Uiτ − Viτ )) = −E(β′
τei(2Uit + e′iβt))

= −2E(β′
τeici)− 2E(β′

τeiξit)− E(β′
τeie

′
iβt)

= −2β′
τE(eici)− β′

τE(eie
′
i)βt,

where the last equality holds because E(eici) ̸= 0 and E(eiξit) = 0 since the fixed effect might be

correlated with the endogenous regressors Xi but is uncorrelated with the idiosyncratic errors ξit.

Plugging the last expression into the formula of Ωday − Ωim in Theorem 6, we immediately get

eq. (B.25) under homoskedasticity.

Proof of Theorem 7. The result holds by the consistency of the estimators (Theorem 2), the law

of large numbers and the continuous mapping theorem. The proof is standard and therefore is

omitted here.

Proof of Remark 11. Now we prove that β̃day, the variation of the day estimator described in Re-

mark 11, is asymptotically equivalent to the impute estimator under Assumptions 1 to 5.

Formally,

β̃day ≡
7∑

t=1

(X ′PzDtPzX)−1X ′PzDtHt. (B.26)

Our proof proceeds in three steps: first, we obtain the expression of
√
n(β̃day − β); second, we

derive an asymptotically equivalent expression of
√
n(β̃day−β) by replacing some sample averages in
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the first step with their probability limits; third, we derive an asymptotically equivalent expression

of
√
n(β̂im − β) under Assumption 5 and show that it is the same as that in the second step.

First, recall that Ht = Xβt + Ut and Pz = Z(Z ′Z)−1Z ′, and note the decomposition

X = PzX + (I − Pz)X, (B.27)

so based on eq. (B.26), we get

β̃day =

7∑
t=1

(X ′PzDtPzX)−1X ′PzDtPzXβt +

7∑
t=1

(X ′PzDtPzX)−1X ′PzDt[(I − Pz)Xβt + Ut]

=

7∑
t=1

βt +

7∑
t=1

(X ′PzDtPzX)−1X ′PzDt[(I − Pz)Xβt + Ut]

=⇒
√
n(β̃day − β) =

√
n

7∑
t=1

(X ′PzDtPzX)−1X ′PzDt[(I − Pz)Xβt + Ut]

=
√
n

7∑
t=1

(X ′PzDtPzX)−1X ′Z(Z ′Z)−1Z ′Dt[(I − Pz)Xβt + Ut]

=
7∑

t=1

(
X ′PzDtPzX

nt

)−1 X ′Z

n

(
Z ′Z

n

)−1√ n

nt

1
√
nt

Z ′Dt[(I − Pz)Xβt + Ut],

(B.28)

since β =
∑7

t=1 βt.

Second, note that 1
nt
Z ′Dt(I − Pz)Xβt

p.−→ 0 because (I − Pz)X is the vector of “X” first stage

residuals (by regressing X on Z) and by construction is uncorrelated with Z for each diary day,

since the diary day is completely random; in addition, 1
nt
Z ′DtUt

p.−→ 0 if Assumption 5 holds (i.e.,

E(ZiUit) = 0). Based on these, a proper central limit theorem implies that 1√
nt
Z ′Dt[(I−Pz)Xβt+

Ut]
d.−→ N (0,Σ) with some positive definite matrix Σ. This further implies that in eq. (B.28), if

we replace the terms in front of 1√
nt
Z ′Dt[(I−Pz)Xβt+Ut] with their respective probability limits,

the asymptotic distribution of
√
n(β̃day − β) won’t be altered. As a result, we get

√
n(β̃day − β) = A−1BC−1

7∑
t=1

√
rt

1
√
nt

Z ′Dt[(I − Pz)Xβt + Ut] + op(1). (B.29)

Third, recall that Ht = Xβt+Ut and Pz = Z(Z ′Z)−1Z ′, and use the decomposition in eq. (B.27),
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we can rewrite β̂im as follows:

β̂im = (X ′PzX)−1X ′Pz

7∑
t=1

Z(Z ′DtZ)−1Z ′DtHt

= (X ′PzX)−1X ′Pz

7∑
t=1

Z(Z ′DtZ)−1Z ′DtPzXβt

+ (X ′PzX)−1X ′Pz

7∑
t=1

Z(Z ′DtZ)−1Z ′Dt[(I − Pz)Xβt + Ut]

= β + (X ′PzX)−1X ′Pz

7∑
t=1

Z(Z ′DtZ)−1Z ′Dt[(I − Pz)Xβt + Ut]

=⇒
√
n(β̂im − β) =

(
X ′PzX

n

)−1 X ′Z

n

7∑
t=1

(
Z ′DtZ

nt

)−1√
rnt

1
√
nt

Z ′Dt[(I − Pz)Xβt + Ut].

(B.30)

When Assumption 5 hold, we can again replace the terms in front of 1√
nt
Z ′Dt[(I − Pz)Xβt + Ut]

in eq. (B.30) with their respective probability limits, without altering the asymptotic distribution

of
√
n(β̂im − β). As a result, we get

√
n(β̂im − β) = A−1BC−1

7∑
t=1

√
rt

1
√
nt

Z ′Dt[(I − Pz)Xβt + Ut] + op(1),

which is the same as eq. (B.29). This completes the proof of the asymptotic equivalence of β̃day

and β̂im.

C When the ATUS Hours Have Classical Measurement Error

In this appendix, we provide detailed discussion about the consequence when the ATUS hours

contain classical measurement error eATUS
it . To summarize: (i) the weekly labor supply elasticities

β are still identified; (ii) the estimators are still consistent and asymptotically normal; (iii) the

asymptotic variance of the infeasible β̂wk remains unchanged since it does not use the ATUS hours;

(iv) the asymptotic variances of the feasible estimators all increase by
∑7

t=1 rtVar(e
ATUS
it )A−1. As

a result, the asymptotic efficiency ranking among the estimators remains unchanged.

Let HATUS
it denote the recorded hours worked on day t by respondent i, and let Hit denote
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the true hours worked on that day. On top of the assumptions in our main paper, the following

assumption about the measurement error eATUS
it = HATUS

it − Hit is maintained throughout this

section.

Assumption C1 (Classical measurement error in the ATUS). For all t = 1, . . . , 7, we assume that

E(eATUS
it ) = 0 and eATUS

it ⊥⊥ (di1, . . . , di7, Z
′
i, Ui)

′.

With Assumption C1, we can rewrite eq. (7) (main model) and eq. (10) (first stage) as follows,

HATUS
it = Hit + eATUS

it = X ′
iβt + Uit + eATUS

it

≡ Ũit

,

HATUS
it = Z ′

iαt + Vit + eATUS
it

≡ Ṽit

.

For our purpose, Ũit differs from Uit only by bringing larger variance (so does Ṽit from Vit). So

the statistical properties of the estimators in our main paper remain. We elaborate this point in

what follows.

C.1 Identification

The measurement error eATUS
it does not enter the true weekly hours worked Hw, so the identification

of β still results from eq. (B.3) if the ATUS contains measurement errors.

For the feasible estimators based on the ATUS data, the identification of β follows the same

argument as in the proof of Theorem 1; that is, we only need to find the counterparts of eq. (B.5),

eq. (B.6) and eq. (B.7) in the presence of classical measurement errors in the ATUS hours. By

Assumption 1 and Assumption C1, we have

E(ZiH
AUTS
it |dit = 1) = E(ZiHit|dit = 1) + E(Zie

AUTS
it |dit = 1)

= E(ZiHit|dit = 1) + E(Zie
AUTS
it )

= E(ZiHit|dit = 1) + E(Zi)E(eAUTS
it )

= E(ZiHit|dit = 1), (C.1)

E(rntZiH
AUTS
it |dit = 1) = E(rntZiHit|dit = 1) + E(rntZie

AUTS
it |dit = 1)

= E(rntZiHit|dit = 1) + E(rntZie
AUTS
it )
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= E(rntZiHit|dit = 1) + E(rntZi)E(eAUTS
it )

= E(rntZiHit|dit = 1). (C.2)

Plugging eq. (C.1) into eq. (B.5) and eq. (B.7) and plugging eq. (C.2) into eq. (B.6), we see that

the identification of β still holds when the ATUS contains classical measurement errors.

C.2 Consistency

First, the infeasible estimator β̂wk is not affected by the measurement error in the ATUS, and

is still consistent. To see the consistency of other estimators when the ATUS contains classical

measurement error, we only need to slightly modify eqs. (B.9) to (B.11), which were the key steps

in establishing the consistency without measurement error. With measurement error, eq. (B.9)

becomes

β̂im − β̂wk =
7∑

t=1

A−1
n Bn

[
C−1
nt

1

nt
Z ′DtṼt − C−1

n

1

n
Z ′Vt

]
p.−→

7∑
t=1

A−1BC−1[E(ZiditṼit)− E(ZiVit)]

=
7∑

t=1

A−1BC−1[E(ZiVit)E(dit)− E(ZiVit)]

= 0,

where the second equality holds by E(ZiṼit) = E(ZiVit) and dit ⊥⊥ (Zi, Vit, e
ATUS
it ). Since β̂wk is

consistent, so is β̂im. Let eATUS
t = (eATUS

1t , . . . , eATUS
nt )′, then eq. (B.10) becomes

β̂pool − β̂wk =
7∑

t=1

A−1
n BnC

−1
n

Z ′(rntDt − I)Ht

n
+

7∑
t=1

A−1
n BnC

−1
n

Z ′rntDte
ATUS
t

n

p.−→ 0 +A−1BC−1
7∑

t=1

Z ′rtDte
ATUS
t

n
(by eq. (B.10))

p.−→ 0 +A−1BC−1
7∑

t=1

E(rtditZie
ATUS
it )

= 0,
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where the last equality holds by Assumption C1. With measurement error, eq. (B.12) becomes

β̂day − β =

7∑
t=1

(X ′PztX)−1X ′PztŨt

p.−→
7∑

t=1

A−1BC−1[E(ZiUit) + E(Zie
ATUS
it )] (by eq. (B.12))

=

7∑
t=1

A−1BC−1E(ZiUit)

= 0,

where the second equality holds also by Assumption C1.

C.3 Asymptotic Variances and Efficiency

First, the asymptotic variance of β̂wk is not affected by the measurement error in the ATUS.

To derive the asymptotic variance of the feasible estimators when the ATUS contains classical

measurement error, we modify eq. (B.13), eq. (B.16) and eq. (16), which were the key steps in

deriving the asymptotic variance without measurement error.

For the asymptotic variance of β̂im, eq. (B.13) becomes,

√
n(β̂im − β̂wk) =

7∑
t=1

A−1
n Bn

[
C−1
nt

rnt
1√
n
Z ′DtṼt − C−1

n

1√
n
Z ′Vt

]

=
7∑

t=1

A−1
n Bn

[
C−1
nt

rnt
1√
n
Z ′Dt(Vt + eATUS

t )− C−1
n

1√
n
Z ′Vt

]
.

By Assumption C1 and n−1/2Z ′Dte
ATUS
t = Op(1), we see that

√
n(β̂im − β̂wk) = A−1BC−1

7∑
t=1

1√
n
Z ′(rtDt − In)Vt

≡ part 1

+A−1BC−1
7∑

t=1

1√
n
Z ′rtDte

ATUS
t

≡ part 2

+op(1).

By Assumption C1, we get: (i) the asymptotic variance of part 2 is
∑7

t=1 rtVar(e
ATUS
it )A−1; (ii)

part 1 and part 2 are asymptotically independent; and (iii) part 1 is the same as the leading term
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in eq. (B.14). Taking account of these, we get

Ω̃im−wk ≡ Var
(√

n(β̂im − β̂wk)
)
= Ωim−wk +

7∑
t=1

rtVar(e
ATUS
it )A−1,

where Ωim−wk is defined in eq. (12). By Assumption C1, we have eATUS
it ⊥⊥ Ui, so we still have

Cov
(√

n(β̂im − β̂wk),
√
n(β̂wk − β)

)
= op(1).

Therefore, the asymptotic variance of β̂im, when the ATUS contains classical measurement error,

is Ω̃im ≡ Ωwk + Ω̃im−wk = Ωim +
∑7

t=1 rtVar(e
ATUS
it )A−1, where Ωwk is defined in eq. (11) and

Ωim is defined in eq. (14). The new term
∑7

t=1 rtVar(e
ATUS
it )A−1 arises due to the measurement

error.

For the asymptotic variance of β̂pool, eq. (B.16) remains valid even when we substitute Vt with Ṽt,

because n−1/2rntZ
′Dte

ATUS
t = Op(1). So the asymptotic efficiency gap Ωpool−im between β̂pool and

β̂im remains unchanged even with classical measurement error in the ATUS hours. This further

implies that the asymptotic variance of β̂pool becomes Ω̃pool ≡ Ωpool +
∑7

t=1 rtVar(e
ATUS
it )A−1,

where Ωpool is defined in eq. (15).

For the asymptotic variance of β̂day, we replace Uit with Ũit in eq. (16). By Assumption C1 and

the same argument as for β̂im, the asymptotic variance of β̂day, when the ATUS contains classical

measurement error, is Ω̃day ≡ Ωday +
∑7

t=1 rtVar(e
ATUS
it )A−1, where Ωday is defined in eq. (16).
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Figure A.1: DTUS Weekly Hours vs. Randomly Drawn Weekday Daily Hours ×5

Note: The DTUS sample used here is pooled across the years 1985, 1990, 1995, 2000, and 2005. The sample includes only
full-time workers aged between 25 and 54 at the time of interview. We used the default sample weight of the DTUS, which
makes the weighted frequencies of the diaries within each age and sex group are evenly distributed in a week.
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Table A.1: Simulations Based Only on Weekdays in the Dutch Time Use Survey (DTUS)

Corr(X̃i, Ui)

/
Corr(X̃i, Z̃i)

Panel A: n = 250 Panel B: n = 500

β̂wk β̂im β̂pool β̂day β̂wk β̂im β̂pool β̂day

0 / 1
MSE 0.002 0.019 0.019 0.019 0.001 0.009 0.009 0.009
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.002 0.019 0.019 0.019 0.001 0.009 0.009 0.009

0.25 / 0.95
MSE 0.000 0.017 0.017 0.017 0.000 0.008 0.008 0.008
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.000 0.017 0.017 0.017 0.000 0.008 0.008 0.008

0.5 / 0.80
MSE 0.002 0.019 0.019 0.020 0.001 0.009 0.009 0.009
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.002 0.019 0.019 0.020 0.001 0.009 0.009 0.009

0.75/ 0.43
MSE 0.047 0.064 0.064 124.978 0.022 0.031 0.031 0.043
Bias2 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.004
Var 0.047 0.064 0.064 124.970 0.022 0.031 0.031 0.039

Corr(X̃i, Ui)

/
Corr(X̃i, Z̃i)

Panel C: n = 1000 Panel D: n = 2500

β̂wk β̂im β̂pool β̂day β̂wk β̂im β̂pool β̂day

0 / 1
MSE 0.001 0.004 0.005 0.004 0.000 0.002 0.002 0.002
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.001 0.004 0.005 0.004 0.000 0.002 0.002 0.002

0.25 / 0.95
MSE 0.000 0.004 0.004 0.004 0.000 0.002 0.002 0.002
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.000 0.004 0.004 0.004 0.000 0.002 0.002 0.002

0.5 / 0.80
MSE 0.001 0.004 0.005 0.005 0.000 0.002 0.002 0.002
Bias2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.001 0.004 0.005 0.005 0.000 0.002 0.002 0.002

0.75/ 0.43
MSE 0.011 0.015 0.015 0.017 0.004 0.006 0.006 0.006
Bias2 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Var 0.011 0.015 0.015 0.016 0.004 0.006 0.006 0.006

1 This table compares finite sample performance of various estimators using the DTUS data. 10, 000 random samples of different
sizes are drawn from the original DTUS sample of 6, 567 individual-year records.

2 The two numbers in the first column represent: (i) correlation coefficient between regressor X̃i and error term Ui (degree of
endogeneity); (ii) correlation coefficient between regressor X̃i and IV Z̃i (strength of IV). Both are adjusted by changing the
parameter ρ in the simulation setup.

3 β̂wk is the 2SLS estimator given in eq. (5), which uses the accurate hours worked from Mondays to Fridays in the DTUS and serves
as an infeasible benchmark for the three estimators based on the ATUS. β̂wk has virtually no bias and the smallest variance.

4 For each individual in the DTUS, we randomly draw one from the five weekdays using the (equal) diary day sampling probabilities
of the ATUS, thus obtained samples that imitate the ATUS, and we apply β̂im, β̂pool and β̂day to them in order to evaluate their
performance.

5 β̂im has virtually no bias and the smallest variance among the three, followed closely by β̂pool.
6 β̂day is numerically equivalent to β̂im when X̃i is exogenous. When X̃i is endogenous, however, β̂day could display notable bias

and considerable variance, especially when the sample size is smaller (and hence each day subsample is even smaller).
7 β̃day introduced in Remark 11 performs almost identically to β̂im, but we do not report it here to avoid repetition.
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Table A.2: Weekly Labor Supply Regression Coefficient Estimates: the DTUS

Married Men Married Women

β̂re β̂wk β̂im β̂re β̂wk β̂im

n of kids aged < 18 0.42 0.16 0.09 0.01 −4.17 −5.24
(0.18) (0.24) (0.48) (0.36) (0.43) (0.83)

Educ: completed 2ndry 0.95 −0.48 −3.10 −0.96 2.95 2.44
(0.50) (0.66) (1.25) (0.94) (1.11) (2.19)

Educ: above 2ndry 1.84 −0.85 −2.33 −0.39 5.63 5.37
(0.53) (0.70) (1.34) (1.12) (1.32) (2.62)

P value of joint Hausman test 0.00 0.11 0.00 0.53
n of Obs. 1746 1746 1746 835 835 835
R squared5 0.06 0.03 0.07 0.18 0.39 0.26

1 The other control variables are age, age-squared, a dummy of working in private sector (with public
sector as base group), an urban area dummy (with rural being base group), and year dummies.

2 β̂re uses the recalled weekly hours; β̂wk uses the true diary weekly hours; β̂im uses the fictitious
sample where only one day is randomly chosen for each individual using the ATUS diary day sampling
weights.

3 Standard errors are in parentheses.
4 We conduct the joint Hausman tests (i.e., the coefficients associated with the three regressors in the

table) regarding whether there are significant differences between β̂re and β̂im, and between β̂wk

and β̂im, respectively.
5 The R squared for impute estimator is the average R squared of the seven linear regression of daily

hours worked Hit = X′
iβt + Uit for t = 1, . . . , 7.

Table A.3: Comparison between the Respondents in the ATUS and the CPS

ATUS CPS (in ATUS or not, Table A.4) Entire CPS

Male 40.5% 48.3% 48.6%
College graduates 21.3% 18.1% 18.5%
Age 39.4 39.3 39.3
s.d. (8.4) (8.6) (8.7)
Hours usually worked per week 36.1 38 38
s.d. (9.0) (8.5) (8.5)
Hourly wage (2017 US dollars) 18.7 18.4 18.4
s.d. (9.0) (8.8) (8.8)
Num. of children aged < 5 0.23 0.21 0.20
s.d. (0.52) (0.50) (0.50)
Num. of children aged 5–18 0.79 0.92 0.90
s.d. (1.00) (1.11) (1.11)
Num. of obs. 19,038 73,429 991,116
1 “ATUS” column refers to the sample that was used in our empirical studies. “CPS (in ATUS or not,

Table A.4)” column refers to the CPS 2003-2017 sample after the same sample selection criterion (hourly
paid workers aged between of 25 and 54, whose wage rate is positive, and spouse earnings and total usual
weekly hours worked at all jobs reported in the CPS are observed) is applied, whether they participate
in the ATUS or not. “Entire CPS” differs from “CPS (in ATUS or not, Table A.4)” only in that “Entire
CPS” keeps the respondents whose hourly wage or spouse weekly earnings is missing.
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Table A.4: Weekly Labor Supply Elasticity Estimates: the CPS (in the ATUS or
not)

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 41.02 39.21 34.90 36.65
s.d. (7.01) (7.99) (9.16) (8.29)
Hourly Wage (2017 US dollars) 21.22 17.92 17.79 16.23

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage 7.66 11.15 10.02 12.41
(0.36) (0.48) (0.55) (0.58)

Spouse weekly earnings −0.29 −2.52
(0.12) (0.24)

Num. of kids age < 5 0.34 −6.10
(0.21) (0.42)

Num. of kids ages 5–18 0.30 −2.18
(0.11) (0.17)

R squared 0.16 0.18 0.18 0.17
n of obs. 20,307 15,134 21,165 16,823
1 The sample here contains the CPS 2003-2017 sample after the same sample selection criterion (hourly

paid workers aged between of 25 and 54, whose wage rate is positive, and spouse earnings and total
usual weekly hours worked at all jobs reported in the CPS are observed) is applied, whether they
participate in the ATUS or not.

2 The elasticities are evaluated at the respective mean hours worked in each data source.
3 The other control variables are including age, age-squared, two education dummies, eight Census

division dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and
industry dummies.
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Table A.5: Weekly Labor Supply Regression Coefficient Estimates: the CPS and
the ATUS

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 39.625 38.421 32.499 35.524
s.d. (6.130) (7.260) (10.430) (8.630)
ATUS Hours Worked on Diary Day 4.698 4.741 3.557 4.182
s.d. (4.550) (4.440) (4.000) (4.210)
ATUS Imputed Weekly Hours Worked 41.270 40.380 31.960 36.180
s.d. (lower bound)1 (9.569) (9.792) (9.255) (9.677)
Hourly Wage (2017 US dollars) 21.877 18.649 18.699 16.564

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 2.136 4.371 5.163 4.165
(0.353) (0.406) (0.410) (0.380)

Wage (ATUS) 0.607 1.902 3.349 2.945
(1.387) (1.315) (1.061) (1.194)

Spouse weekly earnings ($100) (CPS) −0.000 −0.003
(0) (0)

Spouse weekly earnings ($100) (ATUS) −0.002 −0.002
(0.001) (0.001)

Num. of kids age < 5 (CPS) −0.316 −2.788
(0.192) (0.266)

Num. of kids age < 5 (ATUS) −0.445 −2.868
(0.792) (0.673)

Num. of kids ages 5–18 (CPS) −0.002 −0.932
(0.101) (0.138)

Num. of kids ages 5–18 (ATUS) −0.183 −0.383
(0.464) (0.379)

R squared (CPS) 0.083 0.149 0.219 0.147
R squared (ATUS) 0.155 0.242 0.174 0.169
p value of joint Hausman test 0.254 0.048 0.064 0.281
n of obs. 3889 3816 5602 5731
1 See footnote 47 in the paper for more details.
2 The estimates based on the CPS recalled weekly hours are β̂re; the estimates based on the ATUS diary

day hours are β̂im.
3 The standard errors are in parentheses.
4 The R squared for impute estimator is the average R squared of the seven linear regression of daily

hours worked Hit = X′
iβt + Uit for t = 1, . . . , 7.

5 For each sample group, we conduct joint Hausman tests regarding whether there are significant differ-
ences between β̂re and β̂im.

6 The other control variables are including age, age-squared, two education dummies, eight Census
division dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and
industry dummies.
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Table A.7: Weekly Labor Supply Elasticity Estimates: the CPS and the ATUS
(Computer & Mathematical, Healthcare, Office & Administrative Occupations)

Panel A: Mean and std dev of hours and wage1

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 38.87 37.22 31.97 35.20
s.d. (7.12) (8.13) (10.68) (8.90)
ATUS Hours Worked on Interview Day 4.64 4.76 3.47 4.18
s.d. (4.57) (4.46) (4.01) (4.21)
ATUS Imputed Weekly Hours Worked 40.69 37.85 30.72 35.89
s.d. (lower bound)2 (10.37) (10.63) (9.41) (9.67)
Hourly Wage (2017 US dollars) 21.91 17.79 19.39 17.01

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 6.61 13.78 13.65 9.22
(1.93) (1.88) (1.51) (1.32)

Wage (ATUS) 10.82 8.65 6.71 3.81
(6.39) (6.13) (4.02) (3.84)

Spouse weekly earnings (CPS) −1.67 −10.58
(0.97) (0.94)

Spouse weekly earnings (ATUS) −5.01 −7.20
(3.19) (2.62)

Num. of kids age < 5 (CPS) 0.77 −8.95
(1.10) (0.97)

Num. of kids age < 5 (ATUS) 5.15 −9.67
(3.54) (2.64)

Num. of kids ages 5–18 (CPS) 0.08 −3.26
(0.59) (0.51)

Num. of kids ages 5–18 (ATUS) −1.84 −2.77
(2.08) (1.43)

R squared (CPS) 0.13 0.19 0.22 0.12
R squared (ATUS) 0.42 0.40 0.18 0.18
p value of joint Hausman test 0.46 0.40 0.04 0.15
n of obs. 1227 1483 4224 4087
1 This table only contains the three occupations with the most observations in the ATUS (see Table A.6).
2 See footnote 47 in the paper for more details.
3 The estimates based on the CPS recalled weekly hours are β̂re; the estimates based on the ATUS diary

day hours are β̂im.
4 The standard errors are in parentheses.
5 The elasticities are evaluated at the respective mean hours worked in each data source.
6 The R squared for impute estimator is the average R squared of the seven linear regression of daily

hours worked Hit = X′
iβt + Uit for t = 1, . . . , 7.

7 For each sample group, we conduct joint Hausman tests regarding whether there are significant differ-
ences between β̂re and β̂im.

8 The other control variables are including age, age-squared, two education dummies, eight Census
division dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and
industry dummies.
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Table A.8: Weekly Labor Supply Elasticity Estimates: the CPS and the ATUS
(Work-related Hours)

Panel A: Mean and std dev of hours and wage1

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 39.63 38.42 32.50 35.52
s.d. (6.13) (7.27) (10.44) (8.63)
ATUS Hours Worked on Diary Day 4.70 4.75 3.56 4.19
s.d. (4.55) (4.44) (4.01) (4.21)
ATUS Imputed Weekly Hours Worked 41.38 40.45 31.99 36.19
s.d. (lower bound)2 (9.57) (9.80) (9.26) (9.69)
Hourly Wage (2017 US dollars) 21.88 18.65 18.70 16.56

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 5.39 11.38 15.89 11.72
(0.89) (1.06) (1.26) (1.07)

Wage (ATUS) 1.55 4.76 10.44 8.15
(3.35) (3.25) (3.32) (3.31)

Spouse weekly earnings (CPS) −0.19 −9.43
(0.41) (0.77)

Spouse weekly earnings (ATUS) −3.47 −5.80
(1.62) (2.12)

Num. of kids age < 5 (CPS) −0.80 −8.58
(0.48) (0.82)

Num. of kids age < 5 (ATUS) −1.03 −8.95
(1.90) (2.10)

Num. of kids ages 5–18 (CPS) −0.00 −2.87
(0.26) (0.42)

Num. of kids ages 5–18 (ATUS) −0.47 −1.19
(1.12) (1.18)

R squared (CPS) 0.08 0.15 0.22 0.15
R squared (ATUS) 0.16 0.24 0.17 0.17
p value of joint Hausman test 0.26 0.05 0.06 0.28
n of obs. 3889 3816 5602 5731
1 The ATUS hours worked in this table include all work-related hours.
2 See footnote 47 in the paper for more details.
3 The estimates based on the CPS recalled weekly hours are β̂re; the estimates based on the ATUS diary

day hours are β̂im.
4 The standard errors are in parentheses.
5 The elasticities are evaluated at the respective mean hours worked in each data source.
6 The R squared for impute estimator is the average R squared of the seven linear regression of daily

hours worked Hit = X′
iβt + Uit for t = 1, . . . , 7.

7 For each sample group, we conduct joint Hausman tests regarding whether there are significant differ-
ences between β̂re and β̂im.

8 The other control variables are including age, age-squared, two education dummies, eight Census
division dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and
industry dummies.
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Table A.9: Weekly Labor Supply Elasticity Estimates: the CPS and the ATUS
(OLS)

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 39.63 38.42 32.50 35.52
s.d. (6.13) (7.26) (10.43) (8.63)
ATUS Hours Worked on Diary Day 4.70 4.74 3.56 4.18
s.d. (4.55) (4.44) (4.00) (4.21)
ATUS Imputed Weekly Hours Worked 41.39 40.30 31.95 36.18
s.d. (lower bound)1 (9.57) (9.79) (9.26) (9.68)
Hourly Wage (2017 US dollars) 21.88 18.65 18.70 16.56

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 5.24 10.99 15.31 11.47
(0.89) (1.06) (1.25) (1.07)

Wage (ATUS) 2.18 5.78 11.19 8.56
(3.21) (3.14) (3.21) (3.17)

Spouse weekly earnings (CPS) −0.26 −9.53
(0.40) (0.75)

Spouse weekly earnings (ATUS) −2.94 −6.75
(1.56) (2.02)

Num. of kids age < 5 (CPS) −0.80 −8.56
(0.49) (0.82)

Num. of kids age < 5 (ATUS) −1.07 −8.19
(1.92) (2.08)

Num. of kids ages 5–18 (CPS) −0.01 −2.87
(0.26) (0.42)

Num. of kids ages 5–18 (ATUS) −1.03 −1.26
(1.11) (1.17)

R squared (CPS) 0.08 0.15 0.22 0.15
R squared (ATUS) 0.16 0.24 0.17 0.17
p value of Hausman test 0.36 0.11 0.14 0.37
n of obs. 3889 3816 5602 5731
1 See footnote 47 in the paper for more details.
2 The estimates based on the CPS recalled weekly hours are β̂re; the estimates based on the ATUS diary

day hours are β̂im.
3 The standard errors are in parentheses.
4 The elasticities are evaluated at the respective mean hours worked in each data source.
5 The R squared for impute estimator is the average R squared of the seven linear regression of daily

hours worked Hit = X′
iβt + Uit for t = 1, . . . , 7.

6 For each sample group, we conduct joint Hausman tests regarding whether there are significant differ-
ences between β̂re and β̂im.

7 The other control variables are including age, age-squared, two education dummies, eight Census
division dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and
industry dummies.
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Table A.10: Weekly Labor Supply Elasticity Estimates: the CPS and the ATUS
(Year-Month Grouped IV)

Panel A: Mean and std dev of hours and wage

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

CPS Usual Weekly Hours Worked 39.63 38.42 32.50 35.52
s.d. (6.13) (7.26) (10.43) (8.63)
ATUS Hours Worked on Diary Day 4.70 4.74 3.56 4.18
s.d. (4.55) (4.44) (4.00) (4.21)
ATUS Imputed Weekly Hours Worked 41.56 40.51 31.85 35.79
s.d. (lower bound)1 (9.57) (9.79) (9.26) (9.68)
Hourly Pay (2017 US dollars) 21.88 18.65 18.70 16.56

Panel B: Elasticities (hundredths)2

Married
Men

Unmarried
Men

Married
Women

Unmarried
Women

Wage (CPS) 6.04 10.15 21.78 18.81
(2.68) (2.93) (3.97) (3.51)

Wage (ATUS) 0.00 1.59 −2.10 1.72
(11.17) (9.80) (12.23) (10.47)

Spouse weekly earnings (CPS) −0.18 −11.45
(1.27) (2.59)

Spouse weekly earnings (ATUS) 0.00 0.49
(5.84) (7.77)

Num. of kids age < 5 (CPS) −0.91 −8.86
(0.49) (0.82)

Num. of kids age < 5 (ATUS) −0.16 −8.52
(1.98) (2.11)

Num. of kids ages 5–18 (CPS) 0.02 −2.77
(0.26) (0.43)

Num. of kids ages 5–18 (ATUS) −0.87 −1.87
(1.14) (1.19)

R squared (CPS) 0.08 0.14 0.21 0.13
R squared (ATUS) 0.12 0.20 0.15 0.14
p value of Hausman test 0.60 0.39 0.04 0.09
n of obs. 3889 3816 5602 5731
1 See footnote 47 in the paper for more details.
2 The estimates based on the CPS recalled weekly hours are β̂re; the estimates based on the ATUS diary

day hours are β̂im.
3 The standard errors are in parentheses.
4 The elasticities are evaluated at the respective mean hours worked in each data source.
5 The R squared for impute estimator is the average R squared of the seven linear regression of daily

hours worked Hit = X′
iβt + Uit for t = 1, . . . , 7.

6 For each sample group, we conduct joint Hausman tests regarding whether there are significant differ-
ences between β̂re and β̂im.

7 The other control variables are including age, age-squared, two education dummies, eight Census
division dummies, a metropolitan area dummy, race dummies, year dummies, occupation dummies and
industry dummies.
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Table A.11: Pearson’s Chi-squared Test
for Independence Between Diary Day and
Other Variables

Variables P-Values1

Wage decile 0.63
Spouse wage decile 0.87
CPS usual weekly hours worked2 0.58
Education 0.91
Num. of kids age < 5 0.61
Num. of kids ages 5–18 0.07
Age 0.46
Marriage status 0.68
Occupation 0.69
Industry 0.82
Metropolitan area dummy 0.83
Region 0.35
Year 0.55
Race 0.013

1 The null hypothesis is that the diary day is
independent of the corresponding variable.

2 The CPS recalled hours in our sample have only
76 different values, which is likely due to “bag-
ging” issue in recalled hours. We treat the recalled
hours as discrete variable in implementing the chi-
squared test.

3 Though the P-value associated with race is small,
Table A.12 below shows that there is in fact no
substantial variation of racial composition across
the seven days of a week.

Table A.12: Proportion of Races Across Seven Days

Day White Non-Hispanic Black Non-Hispanic Other Race Non-Hispanic Hispanic

1 0.64 0.15 0.05 0.16
2 0.63 0.17 0.05 0.15
3 0.63 0.15 0.05 0.18
4 0.67 0.15 0.05 0.13
5 0.61 0.17 0.05 0.17
6 0.64 0.15 0.05 0.17
7 0.64 0.15 0.04 0.17
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