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Abstract

In a two step extremum estimation (M estimation) framework with a finite dimensional parameter

of interest and a potentially infinite dimensional first step nuisance parameter, I propose an averaging

estimator that combines a semiparametric estimator based on nonparametric first step and a parametric

estimator which imposes parametric restrictions on the first step. The averaging weight is an easy-to-

compute sample analog of an infeasible optimal weight that minimizes the asymptotic quadratic risk.

I show that under Stein-type conditions, the asymptotic lower bound of the truncated quadratic risk

difference between the averaging estimator and the semiparametric estimator is strictly less than zero for

a class of data generating processes (DGPs) that includes both correct specification and varied degrees

of misspecification of the parametric restrictions, and the asymptotic upper bound is weakly less than

zero. The averaging estimator, along with an easy-to-implement inference method, is demonstrated in

an example.

Keywords: two step M estimation, semiparametric model, averaging estimator, uniform dominance, asymp-

totic quadratic risk
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1 Introduction

Semiparametric models, consisting of a parametric component and a nonparametric component, have gained

popularity in economics. Being approximations of complex economic activities, they harmoniously deliver

two advantages at the same time: parsimonious modeling of parameters of interest and robustness against

misspecification of arbitrary parametric restrictions on activities that are not central for the research question

at hand. One disadvantage of associated semiparametric estimators, however, is that they are typically less

efficient than their parametric counterparts which result from imposing certain parametric restrictions on the

nonparametric components of semiparametric models.1 This efficiency defect of semiparametric estimators

often renders relatively imprecise estimates and low test power, especially when the parametric restrictions

are correct or only mildly misspecified.

Recognizing such tension between robustness and efficiency, researchers have utilized various specification

tests to choose between semiparametric and parametric estimators in practice. Neither parametric estimators

nor the resulting pre-test estimators, however, are robust to misspecification of the parametric restrictions,

since whether they are more accurate than the semiparametric estimators depends on the unknown degree

of misspecification.

In this paper, I aim to solve this tension between robustness and efficiency in semiparametric models

by developing an estimator whose improvement on the accuracy over semiparametric estimators (used as

benchmark) is robust against varied degrees of misspecification of the parametric restrictions. First, I

propose an averaging estimator that is a simple weighted average between the semiparametric estimator and

the parametric estimator with a data-driven weight. Second, I prove that under mild Stein-type conditions,

the proposed averaging estimator exhibits (weakly) smaller asymptotic quadratic risks – a general class of

measures of accuracy that includes mean squared error (MSE) as a special case – than the semiparametric

benchmark regardless of whether the parametric restrictions are correct or misspecified, and regardless of

the degree of misspecification. Third, I adopt an inference method that is valid regardless of the unknown

degree of misspecification.

Let β denote the unknown parameter of interest, and let β̂n,SP and β̂n,P denote the semiparametric and

the parametric estimators, respectively. The averaging estimator β̂n,ŵn takes the form

β̂n,ŵn ≡ (1− ŵn)β̂n,SP + ŵnβ̂n,P , (1.1)

where n is the sample size and ŵn is a data-driven averaging weight elaborated in (2.2) below. Intuitively,

the weight quantifies the asymptotic efficiency gain achieved by imposing the parametric restrictions and the

possible asymptotic misspecification bias incurred by deviating from the robust semiparametric benchmark.

It then balances the two to reduce asymptotic quadratic risks compared to the semiparametric estimator.

I employ a uniform asymptotic theory to approximate the upper and the lower bounds of the finite-sample

truncated quadratic risk difference between the averaging estimator and the semiparametric estimator over

a large class of DGPs.2 Extending the subsequence argument developed in Cheng, Liao, and Shi (2019)

for generalized method of moments (GMM) estimators, I show that the sufficient conditions for the lower

bound to be strictly less than zero and for the upper bound to be weakly less than zero is mild. Since

the class I consider includes DGPs under which the parametric restrictions are correctly specified, mildly

misspecified and severely misspecified, my uniform dominance result asserts that the averaging estimator

1In this paper, I will use the terms “parametric estimator” and “parametric restrictions” loosely. They do not necessarily
mean that the data distribution is fully parametric, but only mean that the nonparametric argument in the estimation objective
function belongs to a finite dimensional subspace of certain infinite dimensional function space, as described in (3.5) below.

2The loss function and the truncated loss function are defined in (2.1) and (3.10), respectively.
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achieves improvement in accuracy over the semiparametric estimator in a way that is robust against varied

degrees of misspecification. Unlike Cheng et al. (2019) who focus on one step GMM estimators, I consider two

step M estimation framework for semiparametric models as it encompasses maximum likelihood estimator

(MLE), GMM, many kernel-based and sieve estimators, etc. as special cases, as well as regular one step M

estimators.

The semiparametric models considered in this paper are flexible enough to include many popular models

as special examples – such as single-index models (Ahn, Ichimura, and Powell, 1996), transformation models

(Han, 1987; Sherman, 1993), censored and truncated regression models (Powell, 1986), control function

approaches (Blundell and Powell, 2003, 2004), nonlinear panel data models (Honoré, 1992), and dynamic

discrete choice models (Hotz and Miller, 1993; Keane and Wolpin, 1997; Buchholz, Shum, and Xu, 2021),

among others.

I demonstrate my averaging estimator using a carefully curated partially linear model example. A point

worth emphasizing here is that although the estimation error of the nonparametric component does not affect

the asymptotic properties of the parametric component estimator in partially linear models (Robinson, 1988),

the presence of the nonparametric component and how it is modeled still generally inflicts critical impacts

on the latter. This point will become clearer in Section 4.

This paper has a few obvious limitations. First, the uniform asymptotic dominance result in this paper

does not guarantee that the averaging estimator outperforms the semiparametric benchmark in finite samples,

even though the uniform asymptotic analysis employed here provides better approximation of the estimators’

finite sample properties than the usual pointwise asymptotic framework. Second, inference based on the

proposed averaging estimator, like most cases (if not all) of post-averaging inference, is more challenging

than that based on standard estimators. The two step method proposed by Claeskens and Hjort (2008)

is used to construct an asymptotically valid confidence interval in this paper (also see, e.g., Kitagawa and

Muris, 2016, for its application), but its coverage probability can be conservative. Third, I focus on averaging

between one semiparametric estimator and one parametric estimator, excluding estimators that average the

semiparametric estimator with more than one parametric estimators and potentially outperform the one

proposed in this paper. These limitations all point out important directions for future research.

Related literature. This paper belongs to the growing literature on frequentist shrinkage and model av-

eraging estimators, which are weighted averages of other estimators.3 Shrinkage estimators date back to the

James-Stein estimator in Gaussian models (James and Stein, 1961), and are comprehensively reviewed by

Fourdrinier, Strawderman, and Wells (2018). Recent years have seen development of frequentist model aver-

aging estimators in many contexts. Hjort and Claeskens (2003) and Hansen (2016) consider likelihood-based

estimators in parametric models. In least square regression models, various model averaging estimator are

developed and their properties are carefully examined by Judge and Mittelhammer (2004); Mittelhammer

and Judge (2005); Hansen (2007); Wan, Zhang, and Zou (2010); Hansen and Racine (2012); Hansen (2014);

Liu (2015) and Hansen (2017), just to name a few. Lu and Su (2015) study quantile regression models.

For semiparametric models, Judge and Mittelhammer (2007); DiTraglia (2016) consider averaging GMM

estimators, and Kitagawa and Muris (2016) analyze averaging semiparametric estimators of the treatment

effects on the treated (ATT) based on different parametric propensity score models. Averaging estimators in

nonparametric models are also discussed, for example, by Fan and Ullah (1999); Yang (2001, 2003); Wasser-

man (2006) and Peng and Yang (2021). Magnus, Powell, and Prüfer (2010) and Fessler and Kasy (2019),

among others, investigate Bayesian model averaging estimators as well. Claeskens and Hjort (2008) provide

an excellent review of both frequentist and Bayesian model averaging estimators. My paper differs from this

3Such names as combined or ensemble estimators are also used by different authors to refer to weighted averages of other
estimators with different goals and approaches.
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literature in the following ways. First, I utilize a two step semiparametric M estimation framework that

nests many familiar estimators (one step or two step) in semiparametric (and parametric) models as special

cases. Second, in contrast to the literature on nonparametric models that deals with unknown functions

and averages among growing number of estimators, my paper focuses on finite dimensional parameters in

semiparametric (and parametric) models and averages between two estimators. The asymptotic theories

of the two differ substantially. Third, my averaging weight, when specialized to corresponding cases, dif-

fers from those in the aforementioned papers. Fourth, I prove that my averaging estimator dominates the

semiparametric benchmark using a uniform asymptotic approach, instead of the pointwise local asymptotic

approach (Le Cam, 1972; Van der Vaart, 2000, Chapter 7) often taken in the literature. Finally, one of the

sufficient conditions for the uniform dominance of my averaging estimator, when certain weighting matrix is

chosen in the loss function, is of Stein type and stronger than some estimators in the literature and weaker

than others (detailed in Section 3).

This paper is particularly related to Cheng et al. (2019), but it generalizes their uniform asymptotic

approach and the subsequence technique from one step GMM estimators in moment condition models to two

step M estimators in more general semiparametric models.4 Moreover, the restricted estimator considered in

Cheng et al. (2019) is asymptotically efficient, but I allow the restricted (parametric) estimator to be away

from the efficiency bound. This relaxation is useful in practice since in complex semiparametric models,

the efficient estimators under the parametric restrictions may be difficult to implement or may have certain

undesirable features, and the widely used ones may fall short of the efficiency bound (e.g., the Heckit

estimator in sample selection models).

The uniform asymptotic analysis in this paper premises upon high-level asymptotic distributions of β̂n,SP

and β̂n,P , which can be justified under various primitive conditions in different models, as shown in numerous

previous studies on the asymptotic properties of specific and general M estimators – e.g., Lee (1982); Gallant

and Nychka (1987); Ahn and Powell (1993); Newey and Powell (1993); Andrews (1994); Newey (1994); Newey

and McFadden (1994); Powell (1994); Pakes and Olley (1995); Powell (2001); Bickel and Ritov (2003); Chen,

Linton, and Van Keilegom (2003); Hirano, Imbens, and Ridder (2003); Firpo (2007); Newey (2009); Ichimura

and Lee (2010); Ackerberg, Chen, and Hahn (2012); Ackerberg, Chen, Hahn, and Liao (2014) and Ichimura

and Newey (2017) – and it is just impossible to enumerate all of them here.

Averaging estimators can be regarded as a smoothed generalization of pre-test estimators (or model

selection estimators), since the latter restrict the averaging weights to be either zero or one depending on the

result of certain specification test or criterion. For models involving infinite dimensional components, many

authors propose various specification tests, including Bierens (1990)using sieve estimators, Robinson (1989)

using kernel estimators, and many others. Model selection estimators based on focused information criterion

(FIC) in semiparametric models are considered, for example, by Hjort and Claeskens (2006). Pre-test

estimators typically perform better than the unrestricted benchmark for certain degrees of misspecification

of the restrictions and worse for the others. Moreover, the literature has documented that in many settings,

the maximal scaled quadratic risks of pre-test estimators based on consistent tests grow unbounded as sample

sizes increase, despite promising properties suggested by pointwise asymptotic analysis. A well-cited example

is the Hodges’ estimator (e.g., Van der Vaart, 2000, Example 8.1), among others (Yang, 2005; Leeb and

Pötscher, 2005, 2008; Hansen, 2016; Cheng et al., 2019, etc.). In contrast, the uniform asymptotic approach

of this paper better approximates the finite sample properties of the averaging estimator, so the resulting

averaging estimator has (weakly) smaller asymptotic quadratic risks than the semiparametric benchmark

uniformly over the degree of misspecification and avoids the common pitfalls of pre-test estimators.

My paper is related to but differs from the following strands of literature as well. First, doubly robust

4Cheng et al. (2019) is in turn based on the uniform inference analysis in Andrews, Cheng, and Guggenberger (2011).
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estimators in statistics (e.g., Scharfstein, Rotnitzky, and Robins, 1999; Bang and Robins, 2005; Rubin and

van der Laan, 2008; Cao, Tsiatis, and Davidian, 2009; Tsiatis, Davidian, and Cao, 2011) are robust against

misspecification, but they typically require that some components of the model is correctly specified, while

my averaging estimator exhibits improved risk regardless of the degree of misspecification. Second, recent de-

velopment in locally robust estimators in semiparametric models (e.g., Chernozhukov, Escanciano, Ichimura,

Newey, and Robins, 2018; Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018)

removes impacts of the nuisance function estimation bias (brought by regularization of machine learning

methods) on the influence function of the parameter of interest by orthogonalization (Neyman, 1959). My

approach is still useful in light of their approach, since how the nuisance function is modeled affects both

variance and bias even when it is known and needs no estimation. Third, among the literature on sensitivity

analysis (e.g., Rosenbaum and Rubin, 1983; Leamer, 1985; Imbens, 2003; Altonji, Elder, and Taber, 2005;

Andrews, Gentzkow, and Shapiro, 2017; Mukhin, 2018; Oster, 2019), Bonhomme and Weidner (2018) and

Armstrong and Kolesár (2021) are the closest to my paper. They take a restricted model as benchmark, and

study the sensitivity of the results with respect to possible local misspecification that deviates from it. My

paper takes an opposite perspective by positing a robust unrestricted semiparametric model as benchmark

and pursuing uniform quadratic risk improvement with the help of added parametric restrictions.

Plan of the paper. The rest of this paper is organized as follows. Section 2 prescribes how to compute the

proposed averaging estimator in practice. Section 3 states and proves the main uniform dominance result of

the paper along with its conditions and an inference method. Section 4 conducts Monte Carlo experiments

using a partially linear model example to investigate the finite sample performance of the proposed averaging

estimator. Section 5 concludes. Appendix A gives the proofs of the results in Section 3. Appendix B

provides the proofs of the intermediate lemmas in Appendix A. Appendix C presents an alternative method

of computing the averaging weight. Appendix D details additional theoretical and Monte Carlos results for

the example in Section 4. Appendix E discusses the justification for the high-level Condition 2. (Appendices

B to E are available online in the supplementary material associated with this article, at Cambridge Core –

www.cambridge.org/core/journals/econometric-theory.)

2 Averaging Weight

In this section, I explain how to compute the averaging estimator in practice. Rigorous conditions and the

formal uniform asymptotic dominance result will be provided in Section 3.

One is interested in the estimation of a finite dimensional vector of parameters β ∈ B, where B ⊂ Rk is

compact. Let F denote the set of DGPs, and let F denote one DGP from F . For any estimator β̂n of the

parameter β and a chosen symmetric positive semi-definite weighting matrix Υ,5 I define the loss function

to be the following quadratic form6

`(β̂n, β) ≡ n(β̂n − β)′Υ(β̂n − β). (2.1)

Here the weighting matrix Υ is chosen by the researcher and reflects how much the researcher values the

estimation accuracy of each coordinate of β.7 If the researcher treats every coordinate equally, then she

5Υ can be assumed to be symmetric without loss of generality, because for any asymmetric Υ̃ there exists a symmetric Υ
that gives rise to the same loss function.

6Hansen (2016) argues that the choice of loss function affects asymptotic performance of estimators only via its local quadratic
approximation, so considering a quadratic loss function is not as restrictive as it may appear. To be precise, the loss function
used in the asymptotic theory of this paper is a truncated version of (2.1), which is defined in (3.10) below.

7With certain choice of Υ, the main theorem of this paper (Theorem 1 below) requires k ≥ 4 (see the discussion that
immediately follows Theorem 1).
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may choose Υ = Ik (the k × k identity matrix). If the researcher focuses on the prediction error in a linear

regression model, then she may choose Υ = EF (XiX
′
i), where EF (·) denotes the expectation operator under

DGP F and Xi denotes the regressors. If the researcher focuses on only a subvector of β, then she may

choose Υ to be a diagonal matrix with diagonal entries associated with the subvector being one and other

diagonal entries being zero. This last example shares the same spirit with the FIC model averaging (Zhang

and Liang, 2011), but the weighting matrix Υ here affords more flexibility. Note that both the loss function

and the averaging weight (to be introduced later) depend on Υ, but I suppress such dependence for notational

simplicity.

Given the loss function in (2.1), the semiparametric estimator β̂n,SP is preferred in terms of robustness

since it is consistent whether the parametric restrictions hold or not. The parametric estimator β̂n,P is

consistent only if those restrictions are sufficiently close to holding, and if they do, β̂n,P will be asymptotically

more efficient than β̂n,SP . As a result, the potentially more efficient β̂n,P sometimes has improved asymptotic

quadratic risk over the robust β̂n,SP but sometimes does not. The optimal robustness-efficiency trade-off (i.e.,

bias-variance trade-off) depends on the degree of misspecification of the parametric restrictions, a measure

unknown to the researcher.

The main message of this paper is that with the averaging weight I propose, the averaging estimator of

the form in (1.1) always has no larger asymptotic risk than the robust estimator β̂n,SP regardless of whether

the parametric restrictions hold or not and regardless of the degree of misspecification.

Under DGP F , let VF,SP and VF,P be the asymptotic variance-covariance matrices of β̂n,SP and β̂n,P ,

respectively, and let CF be their asymptotic covariance matrix. Let V̂n,SP , V̂n,P and Ĉn be the consistent

estimators. Then the data-driven averaging weight is

ŵn ≡
tr[Υ(V̂n,SP − Ĉn)]

tr[Υ(V̂n,SP + V̂n,P − 2Ĉn)] + n(β̂n,P − β̂n,SP )′Υ(β̂n,P − β̂n,SP )
, (2.2)

where tr(·) indicates the trace of a square matrix.8 This weight falls in the interval [0, 1] with probability

one, and the reason is detailed in Appendix C.9

Remark 1. If β̂n,P is an asymptotically efficient estimator under the parametric restrictions, then CF =

VF,P . In this case, the averaging weight can simplify to

ŵn ≡
tr[Υ(V̂n,SP − V̂n,P )]

tr[Υ(V̂n,SP − V̂n,P )] + n(β̂n,P − β̂n,SP )′Υ(β̂n,P − β̂n,SP )
, (2.3)

which resembles the GMM averaging weight proposed by Cheng et al. (2019).

It is easier to see the intuition of the averaging weight from (2.3). If the asymptotic efficiency gain

of imposing the first step parametric restrictions, represented by tr[Υ(V̂F,SP − V̂F,P )], is large, then the

averaging estimator ought to allocate more weight to β̂n,P . If, on the other hand, the asymptotic bias of

β̂n,P resulting from misspecification of the restrictions, represented by β̂n,P − β̂n,SP (since β̂n,SP is always

consistent), is large, then the averaging estimator should assign less weight to β̂n,P . The proposed weight in

(2.3) operationalizes such intuition by striking a balance between robustness and efficiency.

The weight in (2.2) generalizes (2.3) by allowing for averaging even when β̂n,P is not asymptotically effi-

cient. This generalization is especially important for semiparametric models, because asymptotically efficient

8Note that in (2.2), Ĉn is in general an asymmetric matrix, i.e., Ĉn 6= Ĉ′n, but the ΥĈn and ΥĈ′n have the same trace due
to the symmetry of Υ and properties of the trace operator. The same goes for CF and C′F .

9In finite samples, however, it is possible that ŵn falls outside the interval [0, 1]. One could add a restriction that enforces
ŵn ∈ [0, 1], and this can be justified by minor changes (not detailed in this paper) in the proofs of the theoretical results in
Section 3. I thank an anonymous referee for pointing this out.
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estimators do not always exist in these models, and might be difficult to compute or possess undesirable

finite sample properties when they do. A salient example is the sample selection model under the joint

normality restriction, where the Heckman (1979) two step Heckit estimator is asymptotically inefficient but

more widely used than the efficient MLE, for a variety of reasons (see the discussion in Heckman, 1976;

Wales and Woodland, 1980; Nelson, 1984).

Bootstrapping asymptotic variance-covariance matrices.10 The key to the construction of the aver-

aging weight ŵn, as (2.2) implies, is the consistent variance-covariance matrix estimators V̂n,SP , V̂n,P and

Ĉn. They can be computed by bootstrapping the asymptotic variance-covariance matrix of
(
β̂′n,SP , β̂

′
n,P

)′
.

Because the consistency of the bootstrap distribution does not guarantee the consistency of the bootstrap

second moment (Hahn and Liao, 2021), one needs to use one of the consistent bootstrap variance-covariance

estimators proposed in the literature instead of the simple bootstrap second moment. Among them, the

following truncation method propose by Shao (1992) and adapted to this paper is both general and easy to

implement.

(1) Let β̂ ≡
(
β̂′n,SP , β̂

′
n,P

)′
and let β̂j (j = 1, . . . , 2k) denote its jth coordinate. For a larger number B,

randomly draw B bootstrap samples of size n and compute the bootstrap estimate β̂b (b = 1, . . . , B)

for each sample.

(2) For fixed positive constants ν and small c0, define Tj ≡ max{ν|β̂j |, c0} for each coordinate.11 For all b

and all j, define

∆b
j ≡


Tj , if β̂bj − β̂j > Tj ;

β̂bj − β̂j , if |β̂bj − β̂j | ≤ Tj ;
−Tj , if β̂bj − β̂j < −Tj ;

and ∆b ≡
(
∆b

1, . . . ,∆
b
2k

)′
.

(3) Compute the 2k× 2k matrix V̂n ≡ n
B

∑B
b=1(∆b − ∆̄)(∆b − ∆̄)′, where ∆̄ ≡ B−1

∑B
b=1 ∆b. Then V̂n,SP

is the upper left k× k block of V̂n, V̂n,P is the lower right k× k block of V̂n, and Ĉn is the upper right

k × k block of V̂n.

These bootstrapped asymptotic variance-covariance matrix estimates can then be plugged into (2.2) to

compute the averaging weight. I provide in Appendix C an alternative method of computing the asymptotic

variance-covariance matrices via the influence functions of β̂n,SP and β̂n,P , and I will in Section 4 show that

the finite sample performance of the averaging estimator using the influence functions and that using the

bootstrapping method are almost identical to each other.

3 Theoretical Results

In this section, I prove and provide the conditions for the uniform dominance result of the averaging estimator.

An inference method is also suggested.

Suppose βF , the true parameter value under DGP F , is identified as the unique minimizer (assume it

exists) of some objective function QF (β, hF ); in other words, the parameter of interest is

βF ≡ arg min
β∈B

QF (β, hF ), (3.1)

10I thank an anonymous referee for suggesting providing a bootstrap method for computing the averaging weight.
11The validity of Shao (1992)’s method does not reply on any specific values of ν or c0. In his paper, ν = 1 and c0 = 0.05

was used in the simulation study. I will also use these values in my Monte Carlo experiments in Section 4.
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where the objective function QF (β, h) depends on some potentially infinite dimensional nuisance parameter

h. Since the objective function QF has h as an argument, the presence of h and how it is modeled generally

affect the asymptotic properties of β estimators through QF , even in the absence of estimation error of h.12

Under DGP F , the true nuisance parameter value hF is identified as the unique minimizer (assume it exists)

of another objective function RF (h); that is,

hF ≡ arg min
h∈H

RF (h), (3.2)

where (H, ‖ · ‖H) is some complete, separable space of square integrable functions of data Z.

A general class of two step M estimators β̂n is as follows,

β̂n ≡ arg min
β∈B

Q̂n(β, ĥn), (3.3)

where Q̂n(β, ĥn) is some empirical objective function of β which depends on the sample {Zi}ni=1 and ĥn, a

first step estimator of the unknown nuisance parameter h. Throughout this paper, I suppress the dependence

of the empirical objective functions on the sample {Zi}ni=1 for notational simplicity.

As alluded before, I consider averaging two common two step M estimators of β, the semiparametric

estimator β̂n,SP and the parametric estimator β̂n,P . The two differ in how h is modeled and estimated in

the first step. The semiparametric estimator β̂n,SP does not impose specific functional form restrictions on

h, so ĥn results from common nonparametric estimation procedures. For example, suppose ĥn is obtained

from a first step sieve M estimation procedure as follows,

ĥn ≡ arg min
h∈Hn

R̂n(h), (3.4)

where R̂n(h) is some empirical objective function, and Hn are subspaces of (H, ‖ · ‖H) that become dense as

n→∞. Then the first step of the corresponding β̂n,SP is (3.4) and the second step is (3.3).

On the other hand, the parametric estimator β̂n,P arises because economic hypotheses often suggest

certain parametric form of h, or one may want to limit the dimension of h to improve the efficiency. In these

cases, one will model h with a finite dimensional subspace of (H, ‖ · ‖H), denoted as Hg, with a function g

that is known up to a finite dimensional vector of unknown parameters γ. Formally, let Γ ⊂ Rt be a compact

subset of the t-dimensional Euclidean space, then

Hg ≡ {h(·) : ∃ some γ ∈ Γ such that h(·) ∈ H and h(·) = gγ(·) ≡ g(·; γ)}. (3.5)

Let

γ̂n ≡ arg min
γ∈Γ

R̂n(gγ), (3.6)

and let the restricted nuisance parameter estimate be written as ĥn = gγ̂n . Then the first step of β̂n,P is

(3.6) and the second step is (3.3).

For every DGP F ∈ F and under the parametric restrictions, define the first step pseudo-true parameter

vector γF as the unique minimizer (assume it exists) of the following problem

γF ≡ arg min
γ∈Γ

RF (gγ), (3.7)

12Typically, the influence function of the estimator β̂n depends on the first and second derivatives of QF , which in turn both
depend on h generally (see, e.g. Newey, 1994; Ichimura and Lee, 2010; Ackerberg et al., 2014; Ichimura and Newey, 2017).
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where the first step objective function RF (·) is the same as in (3.2) and the first step nuisance function

subspace Hg is defined in (3.5). Also define the second step pseudo-true parameter βF,P as the unique

minimizer (assume it exists) of the following problem

βF,P ≡ arg min
β∈B

QF (β, gγF ), (3.8)

where QF (·, ·) is the same as in (3.1). In general, the nuisance function gγF induced by the pseudo-true

parameter γF is different from the true nuisance function hF identified in (3.2). In consequence, βF,P in

general will be different from βF , the true parameter of interest identified in (3.1). Let δF denote the bias

caused by imposing the parametric restrictions; that is

δF ≡ βF,P − βF . (3.9)

The key to the uniform dominance is to determine the sign of the asymptotic risk difference between

the averaging estimator β̂n,ŵn and the semiparametric estimator β̂n,SP under DGPs with varied degrees of

misspecification. I utilize the uniform asymptotic approach and the subsequence technique in Cheng et al.

(2019), instead of Pitman sequences, which is frequently used when analyzing the pointwise local asymptotic

properties of estimators. Lower (infimum) and upper (supremum) bounds of the risk differences between

β̂n,ŵn and β̂n,SP for all DGPs within a set F satisfying certain regularity conditions are considered before

rendering the sample size to infinity.

To formally state the dominance result, some notation is needed. For any estimator β̂n of β and an

arbitrary real number ζ, define the truncated loss function

`ζ(β̂n, β) ≡ min{`(β̂n, β), ζ}, (3.10)

where `(β̂n, β) is the quadratic loss function defined in (2.1). Compare to the loss function in (2.1), the

truncation does not restrict the applicability of the main result much as ζ could be arbitrarily large. The

bounds of the truncated risk differences for finite sample size n are defined as:

RDn(β̂n,ŵn , β̂n,SP ; ζ) ≡ inf
F∈F

EF [`ζ(β̂n,ŵn , βF )− `ζ(β̂n,SP , βF )], (3.11)

RDn(β̂n,ŵn , β̂n,SP ; ζ) ≡ sup
F∈F

EF [`ζ(β̂n,ŵn , βF )− `ζ(β̂n,SP , βF )]. (3.12)

Then I define the following limits of the finite sample bounds:

AsyRD(β̂n,ŵn , β̂n,SP ) ≡ lim
ζ→∞

lim inf
n→∞

RDn(β̂n,ŵn , β̂n,SP ; ζ), (3.13)

AsyRD(β̂n,ŵn , β̂n,SP ) ≡ lim
ζ→∞

lim sup
n→∞

RDn(β̂n,ŵn , β̂n,SP ; ζ). (3.14)

The key difference between these bounds and the asymptotic risks that utilize Pitman sequences in pointwise

local analysis is that the truncated risk differences in (3.11) and (3.12) are extrema over the entire DGP

set F for each finite sample size n, before n is sent to infinity to obtain the asymptotic bounds in (3.13)

and (3.14). The finite sample extrema may occur at different Pitman sequences for different n, allowing the

asymptotic bounds to be approached not along a single Pitman sequence.

The averaging estimator is said to dominate the semiparametric estimator in terms of asymptotic trun-

cated risk uniformly over F if

AsyRD(β̂n,ŵn , β̂n,SP ) < 0, (3.15)
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and

AsyRD(β̂n,ŵn , β̂n,SP ) ≤ 0. (3.16)

(3.15) and (3.16) will be shown to hold in Theorem 1 under the following conditions and intermediate

results.

Condition 1. Recall δF defined in (3.9). Suppose F is such that the following holds.

(i) δF = 0 only if hF = gγF for some γF ∈ Rt;
(ii) 0k×1 ∈ int(∆δ), where ∆δ ≡ {δF : F ∈ F}.

Condition 1(i) is a simple requirement that if the parametric restrictions on the nuisance function h is

misspecified, then the pseudo-true parameter value βF,P will differ from the true value βF , which rules out the

uninteresting special case that βF may be consistently estimable even with severely misspecified parametric

restrictions. As a result, the degree of misspecification can be indexed by δF , the bias introduced by imposing

the parametric restrictions. Condition 1(ii) says that the parametric restrictions may be misspecified of varied

degrees, including the correct specification case. Condition 1 does not impose any stringent restrictions on

the semiparametric models.

I use the following notation for the nuisance parameter vector that characterizes the joint asymptotic

distributions of β̂n,SP and β̂n,P under DGP F ,

S̄(F ) ≡ (vech(VF,SP )′, vech(VF,P )′, vec(CF )′)
′
, and S(F ) ≡

(
δ′F , S̄(F )′

)′
, (3.17)

where δF is defined in (3.9), and vech(·) and vec(·) are vectorization of distinct elements of a matrix. Let

S ≡ {S(F ): F ∈ F}. (3.18)

For a sequence of DGPs {Fn}∞n=1, I call it correctly specified if n1/2δFn → 0, locally / mildly misspecified

if n1/2δFn → d ∈ (0,∞), and severely misspecified if n1/2δFn →∞.

Condition 2. For any sequence of DGPs {Fn}∞n=1 such that S̄(Fn)→ S̄(F ) for some F ∈ F and n1/2δFn →
d ∈ Rk∞, suppose the estimators β̂n,SP and β̂n,P satisfy the following conditions.

(i) If ‖d‖ <∞, then [
n1/2(β̂n,SP − βFn)

n1/2(β̂n,P − βFn)

]
d.−→

[
ξF,SP

ξF,P + d

]
, (3.19)

where if I define ξ̃F ≡ (ξ′F,SP , ξ
′
F,P )′ and

ṼF ≡

[
VF,SP CF

CF VF,P

]
,

then ξ̃F ∼ N (02k×1, ṼF ), with VF,SP ≥ VF,P .

(ii) If ‖d‖ =∞, then n1/2(β̂n,SP − βFn)
d.−→ ξF,SP and ‖n1/2(β̂n,P − βFn)‖ p.−→∞.

Condition 2(i) requires that both β̂n,SP and β̂n,P are locally regular estimators (Ichimura and Newey,

2017, Definition 1), which means that n1/2((β̂′n,SP , β̂
′
n,P )′− (β′Fn , β

′
Fn,P

)′) has the same limiting distribution

under any sequence of local alternatives as it does when Fn = F for all n. As argued by Ichimura and

Newey (2017, Section 3, p.14), this condition is a mild one and it allows one to bypass imposing primitive

conditions of asymptotic linearity and to focus on the main dominance result of this paper. Note that in

(3.19), β̂n,P is re-centered using δFn and the presumption that n1/2δFn → d. Moreover, VF,SP ≥ VF,P
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states the intuition that imposing parametric restrictions generally leads to (weak) efficiency gain.13 Formal

justification of Condition 2(i) is in Appendix E, and here I only briefly explain how this intuitive condition

can be justified by the Le Cam’s Third Lemma (e.g., Van der Vaart, 2000, Example 6.7) and the definition

of semiparametric efficiency bound (see Bickel, Klaassen, Ritov, and Wellner, 1993, Chapter 3) as follows.

First, when ‖d‖ = 0, the parametric restrictions are correctly specified, due to Condition 1(i). As a result,

the restricted nuisance function space Hg is a subspace of H that contains the true nuisance function hF .

Using an argument similar to that in the proof of Lemma 1 in Ackerberg et al. (2014), one can show that the

semiparametric efficiency bound of the restricted model (with nuisance function space Hg) is smaller than

that of the unrestricted model (with nuisance function space H),14 because the latter is the supremum of

all parametric submodels that include the former. So it is natural to require that VF,SP ≥ VF,P .15 Second,

when ‖d‖ < ∞ but ‖d‖ 6= 0, the asymptotic variance-covariance matrix of β̂n,P remains VF,P by the local

regularity and the Le Cam’s Third Lemma. In addition, the asymptotic variance-covariance matrix of β̂n,SP

remains VF,SP regardless of the parametric restrictions. Therefore, VF,SP ≥ VF,P still holds. Condition 2(ii)

is also intuitive since it states that when the parametric restrictions are severely misspecified, β̂n,P will have

an infinitely large asymptotic bias. Formal justification of Condition 2(ii) is also in Appendix E.

Condition 2 is a high-level condition that might be ensured by different primitive conditions in specific

semiparametric models, on which there have been many important contributions (e.g., Robinson, 1988; Klein

and Spady, 1993; Hirano et al., 2003; Cheng et al., 2019). I bypass those conditions and focus on the common

asymptotic properties in preparation for the discussion of the averaging estimator. Also note that Condition

2 takes the consistency of β̂n,SP and β̂n,P for respective (pseudo-)true values defined in (3.1) and (3.8) as

presumption, for which the primitive conditions have been studied extensively (e.g., Newey and McFadden,

1994, Section 2).

Define

AF ≡ Υ(VF,SP − CF ) and BF ≡ Υ(VF,SP + VF,P − 2CF ). (3.20)

Given the high-level Condition 2, the following lemma follows immediately.

Lemma 1. Suppose Conditions 1 and 2 hold. Also suppose that V̂n,SP , V̂n,P and Ĉn have finite probability

limits.

(i) If ‖d‖ <∞, then

ŵn
d.−→ wF ≡

tr(AF )

tr(BF ) + (ξF,P + d− ξF,SP )′Υ(ξF,P + d− ξF,SP )
, (3.21)

which in turn implies that

n1/2(β̂n,ŵn − βF )
d.−→ ξ̄F,d ≡ (1− wF )ξF,SP + wF (ξF,P + d). (3.22)

13Condition 2(i) is easy to verify for a specific model. The direct verification of Condition 2(i) for the partially linear model
of Section 4 is in Appendix D.

14That is, the difference between the two is a negative semi-definite matrix.
15Following Ackerberg et al. (2014) approach, one needs to define another nuisance parameter η, which captures the features

of the distribution of data Z other than those determined by β and h, then characterize the tangent space (see Newey, 1990;
Bickel et al., 1993) for both the unrestricted and the restricted models. The efficient score function of β in each model is
therefore the projection residual of the score function of β onto its own tangent space. Since the unrestricted models include
the restricted models as a subspace, the tangent space of the former includes that of the latter as a subspace as well. This
implies that the efficient score function of β in the former has smaller norm than that in the latter. This in turn implies that
the semiparametric efficiency bound of the former, which is the inverse of the squared norm of the efficient score function, is
larger than that of the latter. Strictly speaking, it is still possible that the two step parametric estimator is asymptotically
less efficient than the semiparametric estimator despite the opposite relative magnitude of their efficiency bounds, but since
Crepon, Kramarz, and Trognon (1997) and Newey and Powell (1999) show in different models that the two step estimators
achieve the efficiency bounds if the first step is exactly identified, the high-level condition VF,SP ≥ VF,P in Condition 2(i) does
not go without justification.
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(ii) If ‖d‖ =∞, then ŵn
p.−→ 0 and n1/2(β̂n,ŵn − βF )

d.−→ ξF,SP .

Proof. See Appendix A.

Remark 2. In Condition 2(i), I assume VF,SP ≥ VF,P because it is the case in which the averaging is

meaningful (otherwise β̂n,SP dominates β̂n,P , and hence no averaging is needed). Incorporating the possibility

of VF,SP < VF,P into the paper can be done by modifying the data-driven averaging weight in (2.2) to

w̃n ≡
tr[Υ(V̂n,SP − Ĉn)] · I{V̂n,SP ≥ V̂n,P }

tr[Υ(V̂n,SP + V̂n,P − 2Ĉn)] + n(β̂n,P − β̂n,SP )′Υ(β̂n,P − β̂n,SP )
. (3.23)

When VF,SP ≥ VF,P , the weight w̃n = ŵn with probability one, so the asymptotic results in Lemma 1 still

hold. Since Theorem 1, the main uniform dominance theory below (uniform over ‖d‖ values but not VF,SP

or VF,P ) builds on these asymptotic results, it will not be affected by such modification of the weight. When

VF,SP < VF,P , on the other hand, it is easy to see that the weight w̃n converges to 0 in probability. In this

case, the results in Lemma 1(ii) (i.e., n1/2(β̂n,w̃n − βF )
d.−→ ξF,SP ) hold regardless of ‖d‖ value, and the

resulting averaging estimator β̂n,w̃n has the same asymptotic properties as β̂n,SP , only weakly dominating

the latter (and hence the uniform dominance result still holds).

The practical implication of this remark is that if a researcher is uncertain whether the condition VSP ≥ VP
holds, then the weight (3.23) and the resulting averaging estimator can be used.

Condition 3. Suppose F is such that the following holds.

(i) S is compact, with S defined in (3.18);

(ii) for any F ∈ F such that δF = 0 with δF defined in (3.9), there exists a constant εF > 0 such that for

any δ̃ ∈ Rk with 0 ≤ ‖δ̃‖ < εF , there is F̃ ∈ F with δF̃ = δ̃ and ‖S̄(F̃ )− S̄(F )‖ ≤ C‖δ̃‖κ for some C, κ > 0,

where S̄(F ) is defined in (3.17).

Condition 3(i) is necessary for applying the subsequence argument to show the uniform dominance result.

Recall that S defined in (3.18) is a subset of a finite-dimensional Euclidean space, so Condition 3(i) is

equivalent to S being bounded and closed. vech(VF,SP ), vech(VF,P ) and vec(CF ) are bounded if both β̂n,SP

and β̂n,P are locally regular estimators, which is implied by Condition 2(i) for ‖d‖ <∞ (see the discussion

after Condition 2 for details). S being closed is not restrictive in the sense that if S is not closed, then I

can define it to be the closure of S and the main uniform dominance result still holds. Condition 3(ii) says

that for any F ∈ F satisfying the parametric restrictions, there are many DGPs F̃ ∈ F that are close to F ,

where the closeness of two DGPs is measured by the distance between S̄(F̃ ) and S̄(F ).16 This condition will

be used in the subsequence argument to show the uniform dominance and is not restrictive, since it means

that the DGP set F is rich enough, which makes the uniform dominance result harder to hold.

Once a specific model is given, Conditions 1 and 3 can be verified directly, and the literature often has

developed primitive conditions for Condition 2. In Appendix D, I will detail the primitive conditions of

Condition 2 for the partially linear model in Section 4 and verify Conditions 1 - 3 for the parameterization

used in the Monte Carlo experiments in that section.

In order to state an important intermediate result and to explain its rationale, some additional notation

is needed. For any F ∈ F and any d ∈ Rk∞, define

uF,d ≡ (d′, vech(VF,SP )′, vech(VF,P )′, vec(CF )′)
′
. (3.24)

16Under Condition 3(ii), for any F ∈ F with δF = 0 and any sequence of DGPs {Fn}∞n=1 such that n1/2δFn → d with

‖d‖ < ∞, there exists a sequence of DGPs {F̃n}∞n=1 satisfying the requirement of Condition 2(i), and hence the convergence
result in (3.19) holds. This interpretation is related to Assumptions A and B in Andrews and Guggenberger (2010) and
Assumptions A0 and B0 in Andrews and Guggenberger (2009). I thank the co-editor for pointing this out.
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Note that the subvector d of uF,d does not depend on F , and the rest of uF,d does not depend on d. Let

U ≡ {uF,d: ‖d‖ <∞, and F ∈ F with δF = 0}. (3.25)

and

U∞ ≡ {uF,d: ‖d‖ =∞, and F ∈ F}. (3.26)

For any uF,d ∈ U ∪ U∞, define

r(uF,d) ≡

{
EF
(
ξ̄′F,dΥξ̄F,d − ξ′F,SPΥξF,SP

)
, if uF,d ∈ U ;

0, if uF,d ∈ U∞.
(3.27)

where ξ̄F,d and ξF,SP are defined in (3.22) and (3.19), respectively. U and U∞ defined here may appear

similar to the set S defined in (3.18), but they are different. For any uF,d ∈ U ∪ U∞, the corresponding

δ ≡ n−1/2d is a different object from δF associated with F . S is the set of actual nuisance parameter

vectors that determine the asymptotic properties of β̂n,SP , β̂n,P and β̂n,ŵn under DGPs in F . In contrast,

U is the set of all hypothetical nuisance parameter vectors that would have prevailed had the asymptotic

variance-covariance matrices VF,SP , VF,P and CF been the same as some DGP with zero bias (δF = 0) from

F and had the asymptotic bias d been finite. Note that if uF,d ∈ U (i.e., ‖d‖ < ∞), the corresponding δ

ranges from being zero to approaching to infinity at any rate that is not faster than n1/2, corresponding to

correct specification or mild misspecification of the parametric restrictions. Similarly, U∞ is the set of all

hypothetical nuisance parameter vectors that would have prevailed had the asymptotic variance-covariance

matrices VF,SP , VF,P and CF been the same as some DGP from F and had the asymptotic bias d been

infinite. Note that if uF,d ∈ U∞ (i.e., ‖d‖ = ∞), the corresponding δ approaches to infinity at faster than

n1/2 rate, corresponding to severe misspecification of the parametric restrictions. Together, U and U∞ are a

device that allows me to compare the asymptotic risk of β̂n,ŵn to that of β̂n,SP uniformly over varied degrees

of misspecification of the parametric restrictions.

To show the main uniform dominance result, I will first approximate the bounds of asymptotic risk

difference using r(uF,d) for uF,d ∈ U and for uF,d ∈ U∞ separately, and then combine the two cases together.

Lemma 2. Suppose: (i) Conditions 1 - 3 hold; (ii) tr(AF ) > 0 and tr(BF ) > 0, where AF and BF are

defined in (3.20).17 Then

AsyRD(β̂n,ŵn , β̂n,SP ) = max

{
sup

uF,d∈U
r(uF,d), 0

}
(3.28)

AsyRD(β̂n,ŵn , β̂n,SP ) = min

{
inf

uF,d∈U
r(uF,d), 0

}
. (3.29)

Proof. See Appendix A.

If the parametric restrictions are severely misspecified, then one has uF,d ∈ U∞ (and hence ‖d‖ = ∞).

In this case, Lemma 1(ii) states that the asymptotic distributions of β̂n,ŵn and β̂n,SP are the same, and

therefore r(uF,d) = 0. The key message of Lemma 2 is that the upper (or lower) bound of the asymptotic

risk difference is determined by the maximum between supuF,d∈U r(uF,d) and supuF,d∈U∞ r(uF,d) = 0 (or the

minimum between infuF,d∈U r(uF,d) and infuF,d∈U∞ r(uF,d) = 0).

17As shown in Appendix A (Lemmas A.3 and A.4), a weaker condition than (ii) – tr(AF ) ≥ 0 and tr(BF ) > 0 – is sufficient
for proving Lemma 2. Due to the definitions of AF and BF , however, if VF,SP ≥ VF,P as postulated in Condition 2(i), then
tr(BF ) > 0 implies tr(AF ) > 0.
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By Lemma 2, showing that supuF,d∈U r(uF,d) ≤ 0 and infuF,d∈U r(uF,d) < 0 is sufficient for the following

uniform dominance theorem.

Theorem 1. Suppose Conditions 1 - 3 hold. Let AF and BF be those matrices defined in (3.20), and let

ρmax(·) denote the largest eigenvalue of a square matrix. If tr(AF ) > 0, tr(BF ) > 0 and tr(AF ) ≥ 4ρmax(AF )

for any F ∈ F with δF = 0, then (3.15) and (3.16) hold; that is, the averaging estimator β̂n,ŵn uniformly

dominates the semiparametric estimator β̂n,SP .

Proof. See Appendix A.

To give some intuition for the conditions of the dominance result in Theorem 1, let us consider the

case where the researcher chooses Υ = (VF,SP − CF )−1. In this case, the condition tr(AF ) > 0 becomes

VF,SP > CF , which is a necessary condition for VF,SP > VF,P . The latter indicates that the parametric

estimator should achieve strict efficiency gain over the semiparametric estimator. In addition, the condition

tr(AF ) ≥ 4ρmax(AF ) becomes k ≥ 4, which requires the researcher to consider the overall risk of multiple

parameters of interest, but not a single coordinate. Such dimension condition is common for shrinkage

estimators. For example, my condition here is stronger than the condition k ≥ 3 for the estimators in James

and Stein (1961) and Hansen (2016), the same as k ≥ 4 for the averaging estimator in Cheng et al. (2019),

and is weaker than k ≥ 5 for the the estimators in Judge and Mittelhammer (2004) and Mittelhammer and

Judge (2005).

The averaging weight ŵn in (2.2) is a sample analog of the infeasible optimal weight under the quadratic

loss function in (2.1). To see this, note that by Condition 2(i), for any fixed weight w, the asymptotic

distribution of β̂n,w when ‖d‖ <∞ is obtained by the continuous mapping theorem:

n1/2(β̂n,w − βF )
d.−→ ξF,w ≡ (1− w)ξF,SP + w(ξF,P + d).

Since the asymptotic risk, defined in (2.1), is quadratic in w, the optimal weight w∗ that minimizes the

asymptotic risk (i.e., balances the efficiency gain and the bias induced by the first step parametric restrictions)

under DGP F is

w∗ =
tr[Υ(VF,SP − CF )]

tr[Υ(VF,SP + VF,P − 2CF )] + d′Υd
.

If β̂n,P is asymptotically efficient under the parametric restrictions, then CF = VF,P and the optimal weight

simplifies to

w∗ =
tr[Υ(VF,SP − VF,P )]

tr[Υ(VF,SP − VF,P )] + d′Υd
.

Further note that n1/2(β̂n,P − β̂n,SP ) is an asymptotically unbiased estimator of d when ‖d‖ < ∞, so the

averaging weight ŵn in (2.2) is a sample analog of w∗.

When ‖d‖ = ∞, the parametric estimator β̂n,P is severely biased so that a sensible averaging estimator

ought to allocate zero weight to β̂n,P . This intuition is echoed by Condition 2(ii) and Lemma 1(ii), which

imply that the feasible averaging weight given in (2.2) approaches to zero.

It is worth pointing out that because n1/2(β̂n,P − β̂n,SP ) is only asymptotically unbiased for d but

not consistent,18 and wF in (3.21) is a random variable and in general not unbiased for w∗ in light of

the Jensen’s inequality, so ŵn is neither a consistent nor an unbiased estimator for the infeasible optimal

weight w∗. Proving the uniform dominance of the averaging estimator, therefore, is more challenging than

it might appear at first sight, since β̂n,SP , β̂n,P and ŵn are mutually dependent random variables and their

18In fact, d is not root-n estimable, since its information bound is zero.
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randomness needs to be dealt with at the same time. For this reason, I utilize the subsequence technique in

Cheng et al. (2019) to prove Theorem 1.

Inference. The inference of averaging estimators generally differs from standard estimators, in that the

averaging weights often are random variables that correlate with the candidate estimators, which renders

the asymptotic distribution of β̂n,ŵn non-standard. Fortunately, inference can still be made here, since a

conservative two-step inference method proposed by Claeskens and Hjort (2008, Section 7.5.4) applies to my

averaging estimator.

To adapt Claeskens and Hjort (2008)’s two-step inference method to my averaging estimator, first note

that given any fixed finite d, Condition 2(i) and Lemma 1(i) tell us that ξF,SP and ξF,P completely determine

the joint asymptotic distributions of β̂n,SP , β̂n,P and ŵn. So, they also determine the asymptotic distribution

of β̂n,ŵn , represented by ξ̄F,d in (3.22). As a result, for fixed finite d and any confidence level 1 − α2, the

confidence set of ∆n ≡
√
n(β̂n,ŵn − βF ), denoted as CI1−α2(∆n|d, V̂ ), can be constructed by simulating (S

number of random draws for a given large number S) from the joint distribution of ξF,SP and ξF,P provided

in Condition 2(i) and picking the upper and lower α2/2 critical values of the simulated ξ̄F,d values given in

(3.22).19

To account for the fact that d is unknown, note that Condition 2(i) immediately implies that n1/2(β̂n,P −
β̂n,SP )

d.−→ N (d, VF,P + VF,SP − CF − C ′F ). This enables us to construct the following confidence set of d

for any confidence level 1− α1:

CI1−α1
(d|β̂, V̂ ) ≡ {d : n(β̂n,P − β̂n,SP − d)′V̂ −1

d (β̂n,P − β̂n,SP − d) ≤ χ2
1−α1

(k)}, (3.30)

where V̂d ≡ V̂n,P + V̂n,SP − Ĉn − Ĉ ′n and χ2
1−α1

(k) is the 1− α1 quantile of the χ2 distribution with degrees

of freedom k.

In summary, the two-step method proceeds as follows:

(1) For any confidence level 1 − α, pick α1 and α2 such that α1 + α2 = α, and construct the 1 − α1

confidence set CI1−α1
(d|β̂, V̂ ) of d, defined in (3.30).

(2) For each d ∈ CI1−α1
(d|β̂, V̂ ), construct the 1−α2 confidence set CI1−α2

(∆n|d, V̂ ) of ∆n via simulation

described above, then take the union ∪d∈CI1−α1
(d|β̂,V̂ )CI1−α2

(∆n|d, V̂ ).

That is, for chosen α1 and α2 such that α1 + α2 = α, the 1− α confidence set of βF is just

CI1−α(β|β̂, V̂ ) ≡ {β :
√
n(β̂n,ŵn − β) ∈ CI1−α2

(∆n|d, V̂ ), for some d ∈ CI1−α1
(d|β̂, V̂ )}. (3.31)

In practice, this union can be well approximated by taking a large number of d values satisfying (3.30), and

by taking the union of the resulting sets CI1−α2
(
√
n(β̂n,ŵn − βF )|d, V̂ ) over all such d values. Such union

set allows one to make inference about βF based on the data.

The next lemma follows Claeskens and Hjort (2008, Section 7.5.4) and Kitagawa and Muris (2016,

Appendix A) to show that the confidence set CI1−α(βF |β̂, V̂ ) is asymptotically valid.

Lemma 3. Suppose Conditions 1 - 3 hold. Let α1 and α2 be chosen non-negative numbers such that

α1 + α2 = α, then

lim
n→∞

PF

(
βF ∈ CI1−α(β|β̂, V̂ )

)
≥ 1− α. (3.32)

19In simulating from the joint distribution in Condition 2(i), one obviously needs to replace the unknown variance-covariance

matrices with their consistent estimators. Here and in the rest of this subsection, β̂ is a shorthand for β̂n,SP and β̂n,P , and V̂

is a shorthand for V̂n,SP , V̂n,P and Ĉn.
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Proof. See Appendix A.

In contrast to this two-step method, a naive inference method based on the averaging estimator β̂n,ŵn
might treat the averaging weight ŵn as non-random and compute the asymptotic variance-covariance matrix

of the averaging estimator β̂n,ŵn as ŵ2
nV̂n,P + (1− ŵn)2V̂n,SP + ŵn(1− ŵn)Ĉn + ŵn(1− ŵn)Ĉ ′n. In addition,

standard inference based only on the semiparametric estimator β̂n,SP is always feasible. In Section 4, I will

compare the finite sample sizes and powers of the two-step method with the naive method (two variations)

and the standard β̂n,SP -based inference method in a partially linear model example.

4 An Example with Monte Carlo Experiments

Example - partially linear model. One is interested in estimating β in a partially linear model

Yi = X ′1iβ + s(X1i, X2i) + Ui, (4.1)

where E(Ui|X1i, X2i) = 0, X1i is a k× 1 vector, X2i is an l× 1 vector, and X1i and X2i are assumed not to

overlap for simplicity. The identification of β requires that s(X1i, X2i) and X1i are not perfectly collinear.20

The estimator of β that results from s(x1, x2) being approximated by a series of basis functions (e.g.,

polynomials) that increases with sample size is one example of the semiparametric estimator β̂n,SP .21 If one

imposes certain parametric-form restriction on s(x1, x2) – for example, s(x1, x2) is a linear function of x2

only – then the usual least squares estimator of β could serve as one example of the parametric estimator

β̂n,P .22

Although the semiparametric models considered in this paper are flexible enough to include many exam-

ples, I put this partially linear model in the spotlight here because it highlights a few distinct features of my

averaging estimator. First, unlike in Cheng et al. (2019), the parametric estimator β̂n,P in this paper (e.g.,

the OLS estimator in this example) need not to be asymptotically efficient under the parametric restrictions.

Second, the asymptotic distribution of a two step M estimator generally depends on the presence of the

first step nuisance parameter and how it is modeled (e.g., parametrically or nonparametrically), even in

the absence of first step estimation error like the partially linear model.23 Third, the Stein-type condition

amounts to a dimensionality condition (k ≥ 4) for Υ = (VF,SP − VF,P )
−1

(discussed after Theorem 1) and

it can be easily fulfilled in this example.

Monte Carlo experiments. In my Monte Carlo experiments, the interest is to estimate β ≡ (β1, β2, β3, β4)
′

in the following parameterization of the model in (4.1)

Y =

4∑
j=1

βjX1j +

4∑
j=1

θ1jX2j + ρ

 4∑
j=1

θ2j exp(X2j) +

4∑
j=1

θ3jX1jX2j

+ U, (4.2)

20To be precise, E{[X1i − E[X1i|s(X1i, X2i)] · [X1i − E[X1i|s(X1i, X2i)]
′} is positive definite.

21Many semiparametric estimators of β in partially linear models have been proposed in the literature (e.g., Robinson, 1988;
Donald and Newey, 1994). In particular, since partially linear models may arise as a “reduced form” of the sample selection
models (see discussion on pages 5-8 of Ahn and Powell, 1993, and reference therein), many semiparametric estimators of β in
sample selection models (with potentially nonparametric selection equation) have been proposed and examined under various
identification conditions, for example, Gallant and Nychka (1987); Newey, Powell, and Walker (1990); Ahn and Powell (1993);

Newey (2009). They could all serve as the β̂n,SP in this paper, provided that Conditions in Section 3 are satisfied.
22Least squares estimator is generally considered as a semiparametric estimator, since the distribution of Ui is usually left

unspecified. If the distribution of Ui is parametrically specified, then the resulting least squares estimator is truly a parametric
estimator. In this example, however, both are regarded as “parametric estimators” because they both impose certain restrictions
on the nuisance function s(x1, x2).

23Appendix D shows that for this partially linear model, the influence functions of β̂n,P and β̂n,SP ((D.3) and (D.4),
respectively) differ, although neither of them contains the correction term of the first step estimation error.
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where X1j and X2j denote the jth coordinate of X1 and X2, respectively (k = 4 here).

The parametric estimator β̂n,P results from the following (misspecified) linear regression

Y = θ0 +

4∑
j=1

βjX1j +

4∑
j=1

θ1jX2j + V, (4.3)

while the semiparametric series estimator β̂n,SP results from a linear regression of Y on X1 and polynomials

of X1 and X2 which exclude linear functions of X1 (as proposed by Donald and Newey, 1994).24 When

ρ 6= 0, the parametric estimator β̂n,P suffers from the familiar “omitted variable bias”, since the term in the

bracket in (4.2) generally correlates with both X1 and X2.

In my experiments, U is independent of (X ′1, X
′
2)′ and randomly drawn from N (0, 0.52), and (X ′1, X

′
2)′

is randomly drawn from N (2× `8, VX) with

VX =

[
0.52 × I4 0.05× L4×4

0.05× L4×4 0.52 × I4

]
, (4.4)

where `8 is an 8 × 1 vector of ones, I4 is the 4 × 4 identity matrix and L4×4 is a 4 × 4 matrix of ones.

The parameter values are β = (4, 3, 2, 1)′, θ1 = (1, 1, 1, 1)′, θ2 = (1, 2, 3, 4)′ and θ3 = (5, 6, 7, 8)′. I vary the

value of ρ, which determines the degree of misspecification of β̂n,P , to be from 0 to 1.3 with 0.05 step width.

I consider sample size n = 1000 and Monte Carlo replicates R = 10000.25 I choose the weighting matrix

Υ = I4, so that the risk function is the MSE.

The MSEs, squared biases and variances of β̂n,SP , β̂n,P and β̂n,ŵn are plotted against the degree of

misspecification ρ in Figure 1. I normalize the MSEs by those of β̂n,SP , which is represented by the thin line

at unity. So, an estimator being below this unity benchmark means that it has smaller MSEs than β̂n,SP .

The normalized MSEs of β̂n,ŵn with the averaging weight ŵn computed using the influence function based

asymptotic variance-covariance matrix estimates (detailed in Appendix C) are represented by the thick solid

line, while those using the bootstrapped variance-asymptotic covariance matrix estimates (B = 200 bootstrap

replicates) are represented by the thick dashed line.26 The normalized MSEs of β̂n,P are represented by the

thick dotted line. The squared biases and variances of β̂n,SP and β̂n,P are plotted as well to facilitate the

understanding of the performance of the estimators.27 The squared biases are represented by the thin dashed

and dotted lines, both with cross marks – that of β̂n,P increases so quickly with ρ and shoots outside the

figure range before ρ reaches 0.1. The variances are represented by the thin dashed and dotted lines, both

with diamond marks – that of β̂n,SP remains stable around the level of 45 and is outside the figure range.

Figure 2 plots the Monte Carlo distributions (kernel densities) of the first coordinate of the averaging

estimator β̂n,ŵn (thick solid lines) for representative ρ values. In the same figures, the normal distributions

based on the naive inference method with the naive standard error are represented by the thick dashed lines

(one randomly chosen Monte Carlo replicate) and dotted lines (averaged over all Monte Carlo replicates).

It is obvious that the naive inference method underestimates the randomness in the averaging estimator

β̂n,ŵn,1, since it treats the averaging weight ŵn as non-random.

Figure 3 plots the kernel densities of the averaging weight ŵn for representative ρ values. The thick

solid lines are based on the influence functions in Appendix C, and the thick dashed lines are based on

the bootstrapping in Section 2. The difference between the two is undiscernible. As ρ value increases (so

24Based on a leave-one-out cross validation procedure performed on a preliminary sample, I decided to use polynomials up
to the fourth order for β̂n,SP in my Monte Carlo experiments.

25Alternative sample sizes n = 100, 250, 500 are also considered, and the results are similar (not reported).
26To save time, the bootstrap averaging estimator was only computed R = 1000 replicates with 0.1 step width of ρ values.
27I thank an anonymous referee for suggesting plotting this and the distributions of the averaging weights.
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Figure 1: Monte Carlo MSE, Bias2 and Variance of Estimators for the Partially Linear Model

Notes: (1) Bootstrap results are based on R = 1000 Monte Carlo replicates, n = 1000 sample size and B = 200 bootstrap replicates.
(2) All other results are based on R = 10000 Monte Carlo replicates and n = 1000 sample size.

(3) MSEs are normalized by dividing those of the semiparametric estimator β̂n,SP .

(4) Squared biases and variances are not normalized by the MSEs of β̂n,SP . (V ar(β̂SP ) is off the chart at 45).

(5) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.

does the degree of misspecification), both distributions of the averaging weights concentrate more and more

towards one, confirming the results of Lemma 1.

Table 1 reports for different ρ values the rejection rates of β̂n,SP with the common standard error and

those of β̂n,ŵn with both the naive and the two-step inference methods (S = 1000 random draws in the

second step) for β1, the first coordinate of β. I consider two variations of the naive inference method for

β̂n,ŵn . The “Naive” one uses the common estimators of VF,P and CF when computing the standard error,

but they can be biased under misspecification (see the discussion after (C.3) for details). The “Naive (robust

SE)” one uses the robust influence function ψn,P (z) and (C.2) - (C.3) when computing the standard error.

For the “Size” columns, the test value is 4, the true value of β1; for the “Power” columns, the test value is

0. Table 1 also reports the average ratio between the lengths of the two-step confidence intervals of β̂n,ŵn,1

and of the standard confidence intervals of β̂n,SP,1.

A few observations can be made about the Monte Carlo results. Firstly, regardless of degree of misspeci-

fication, β̂n,SP has almost zero bias but very large and stable variance, while β̂n,P has much smaller variance

but rapidly increasing bias. Secondly and consequently, the normalized MSEs of β̂n,P , compared to those

of β̂n,SP , start from a negligible level and blow up quickly off the chart as ρ increases beyond 0.6. Thirdly,

on the contrary, the normalized MSEs of β̂n,ŵn stay below the unity benchmark regardless of the degree

of misspecification, confirming the uniform asymptotic dominance result in Theorem 1. Fourthly, both the

influence function and the bootstrapping approaches lead to almost identical distributions of the averaging

weights in Figure 3. The normalized MSEs of the two averaging estimators in Figure 1 differ, but to a very

small degree. Fifthly, the asymptotic distributions based on the naive inference method with the common

standard error in Figure 2 badly approximate the actual Monte Carlo distributions of the averaging estimator

β̂n,ŵn,1 for all ρ values. Sixthly, both naive inference methods, with or without the robust standard error,
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lead to almost identical sizes and powers in Table 1, exhibiting significant size distortion (over-rejection).

The two-step inference method, on the other hand, controls the size well and possesses decent powers. Fi-

nally, although the confidence interval based on β̂n,ŵn with the two-step method is much longer than that

based on β̂n,SP with the common standard error, the two display comparable powers.

Figure 2 and Table 1 only present the Monte Carlo results for β1, the first coordinate of β. Similar results

for the other three coordinates are reported in Figures D.1 - D.3 and Tables D.1 - D.3 in Appendix D.

5 Conclusion

This paper studies the two step M estimation of a finite dimensional parameter in a semiparametric model

which contains a potentially infinite dimensional first step nuisance parameter. I present an averaging

estimator that combines a semiparametric estimator based on nonparametric first step and a parametric

estimator which imposes parametric restrictions on the first step, where the averaging weight is the sample

analog of an infeasible optimal weight that minimizes quadratic risk functions. Using a uniform asymptotic

framework, I show that under mild Stein-type sufficient conditions, the asymptotic lower bound of the

truncated quadratic risk differences between the averaging estimator and the semiparametric estimator is

strictly less than zero under a class of DGPs that includes both correct specification and misspecification of

the parametric restrictions, and the asymptotic upper bound is weakly less than zero. Easy-to-implement

computation and inference methods of this averaging estimator, along with its uniform dominance property,

are demonstrated in a popular partially linear model example using Monte Carlo experiments.
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Figure 2: Distributions of the 1st Coordinate of β̂n,ŵn for the Partially Linear Model

(a) Correct (ρ = 0): Distribution of β̂n,ŵn,1 (b) Misspecification (ρ = 0.2): Distribution of β̂n,ŵn,1

(c) Misspecification (ρ = 0.4): Distribution of β̂n,ŵn,1 (d) Misspecification (ρ = 0.6): Distribution of β̂n,ŵn,1

(e) Misspecification (ρ = 0.8): Distribution of β̂n,ŵn,1 (f) Misspecification (ρ = 1): Distribution of β̂n,ŵn,1

Notes: (1) All distributions are based on R = 10000 Monte Carlo replicates, n = 1000 sample size.

(2) Solid lines represent the distributions of the first coordinate of β̂n,ŵn
, the averaging estimator of β1. Dashed and dotted lines both represent the

asymptotic distribution of β̂n,ŵn
if the naive inference method, which takes ŵn as fixed, is used. The former show such asymptotic distributions for a

randomly chosen MC replicate, while the later show such asymptotic distributions averaged over all MC replicates. They highlight that the naive inference
method underestimates the randomness in β̂n,ŵn

.

(3) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Figure 3: Distributions of ŵn for the Partially Linear Model

(a) Correct (ρ = 0): Weight Distribution (b) Misspecification (ρ = 0.2): Weight Distribution

(c) Misspecification (ρ = 0.4): Weight Distribution (d) Misspecification (ρ = 0.6): Weight Distribution

(e) Misspecification (ρ = 0.8): Weight Distribution (f) Misspecification (ρ = 1): Weight Distribution

Notes: (1) All distributions are based on R = 10000 Monte Carlo replicates.
(2) The distributions of the averaging weight ŵn concentrate towards zero as ρ, the degree of misspecification, increase.
(3) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Table 1: Rejection Rates for the 1st Coordinate of β̂n,ŵn in the Partially Linear Model (5% Level)

ρ β̂n,SP β̂n,ŵn CI Length
Naive Naive (robust SE) Two-step CI(β̂n,ŵn )

CI(β̂n,SP )Size Power Size Power Size Power Size Power
0.00 9.27% 34.14% 9.30% 76.25% 9.16% 76.19% 1.65% 21.60% 32.8575
0.05 9.44% 34.64% 11.82% 76.76% 11.63% 76.70% 1.87% 24.64% 32.8520
0.10 9.62% 34.05% 16.53% 75.50% 16.32% 75.45% 2.01% 28.56% 32.8761
0.15 9.61% 35.34% 19.23% 73.95% 19.10% 73.93% 2.00% 32.91% 32.9347
0.20 9.53% 35.15% 19.98% 71.49% 19.83% 71.42% 2.48% 35.41% 33.0424
0.25 9.70% 35.66% 18.85% 68.32% 18.79% 68.26% 3.00% 37.26% 33.1656
0.30 9.97% 34.94% 17.77% 63.83% 17.71% 63.80% 3.32% 37.64% 33.3325
0.35 9.25% 34.24% 16.04% 61.12% 16.01% 61.10% 3.64% 36.88% 33.4862
0.40 9.93% 34.98% 15.88% 59.04% 15.85% 59.05% 4.56% 37.23% 33.6567
0.45 9.64% 34.72% 14.43% 56.00% 14.42% 56.00% 4.80% 37.08% 33.8317
0.50 9.67% 35.08% 13.42% 53.69% 13.42% 53.70% 5.13% 36.88% 33.9892
0.55 9.51% 34.70% 12.85% 51.87% 12.81% 51.81% 5.19% 36.13% 34.1402
0.60 9.37% 34.89% 11.86% 50.27% 11.82% 50.25% 5.16% 35.60% 34.2658
0.65 9.72% 34.92% 12.02% 48.65% 11.99% 48.64% 5.63% 34.96% 34.4102
0.70 9.28% 34.93% 11.54% 47.40% 11.56% 47.38% 5.06% 34.69% 34.5394
0.75 10.08% 35.60% 12.12% 46.96% 12.08% 46.92% 6.05% 34.65% 34.6499
0.80 9.82% 34.53% 11.53% 45.71% 11.49% 45.71% 6.04% 33.21% 34.7484
0.85 9.61% 34.57% 10.94% 44.77% 10.94% 44.74% 5.96% 33.02% 34.8273
0.90 10.47% 34.77% 11.47% 43.99% 11.48% 43.96% 6.48% 32.98% 34.9176
0.95 10.23% 35.08% 11.15% 43.64% 11.14% 43.61% 6.42% 32.60% 34.9878
1.00 10.02% 34.44% 10.87% 42.77% 10.87% 42.75% 6.08% 32.15% 35.0498
1.05 9.89% 35.02% 10.79% 42.42% 10.79% 42.40% 5.75% 32.01% 35.1099
1.10 9.42% 33.73% 10.43% 41.29% 10.43% 41.20% 5.37% 30.17% 35.1653
1.15 10.18% 34.00% 10.58% 40.51% 10.58% 40.50% 6.44% 30.57% 35.2172
1.20 10.12% 34.70% 10.66% 41.01% 10.65% 41.02% 6.50% 31.02% 35.2588
1.25 9.44% 33.39% 9.93% 39.40% 9.94% 39.40% 5.86% 29.81% 35.3034
1.30 9.95% 35.33% 10.76% 41.24% 10.74% 41.25% 6.17% 31.11% 35.3382

Notes: (1) This table only reports the inference results for the first coordinate of β̂n,ŵn
, the averaging estimator of β1. The results for the other thee

coordinates are reported in Tables D.1 - D.3 in Appendix D.
(2) All results are based on R = 10000 Monte Carlo replicates. The two-step inference method uses S = 1000 replicates to simulate the distribution of
ξ̄F,d ≡ (1 − wF )ξF,SP + wF (ξF,P + d) in (3.22).

(3) The naive inference methods treat the averaging weight ŵn as non-random, and hence underestimate the randomness in β̂n,ŵn
. Two naive methods

are reported here: the first uses the common estimators of VF,P and CF , which might be biased under misspecification (see the discussion after (C.3)

for details); and the second combines V̂n,P and Ĉn given in (C.2) and (C.3) with the robust influence function ψn,P (z), which are robust under

misspecification (robust SE).
(4) The test value for the “Size” columns is 4, the true value of β1; the test value for the “Power” columns is 0.

(5) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Appendix A Proofs of the Theorems

Proof of Lemma 1

Proof. Part (i). Note that V̂n,SP , V̂n,P and Ĉn are consistent estimators of VF,SP , VF,P and CF , respectively,

then the result in part (i) follows by Condition 2(i) and the continuous mapping theorem.

Part (ii). Because the probability limits of V̂n,SP , V̂n,P and Ĉn are finite and ‖n1/2(β̂n,P−β̂n,SP )‖ p.−→∞,

one has ŵn
p.−→ 0 by the continuous mapping theorem. This, combined with the Slutsky’s theorem, implies

that n1/2(β̂n,ŵn − βF )
d.−→ ξF,SP .

The following notation will be used in the proofs. C and κ are generic symbols for positive constants

that might take different values at each appearance. For any uF,d ∈ U ∪ U∞ (defined in (3.24) - (3.26)) and

any positive finite ζ, define

Rζ(uF,d) ≡ EF
(
min

{
ξ′F,SPΥξF,SP , ζ

})
, (A.1)

R̄ζ(uF,d) ≡

{
EF
(

min
{
ξ̄′F,dΥξ̄F,d, ζ

})
, if ‖d‖ <∞ (i.e., uF,d ∈ U),

EF
(
min

{
ξ′F,SPΥξF,SP , ζ

})
, if ‖d‖ =∞ (i.e., uF,d ∈ U∞),

(A.2)

rζ(uF,d) ≡ R̄ζ(uF,d)−Rζ(uF,d) (A.3)

=

{
EF
(

min{ξ̄′F,dΥξ̄F,d, ζ} −min{ξ′F,SPΥξF,SP , ζ}
)
, if ‖d‖ <∞ (i.e., uF,d ∈ U),

0, if ‖d‖ =∞ (i.e., uF,d ∈ U∞),
(A.4)

r(uF,d) ≡

{
EF
(
ξ̄′F,dΥξ̄F,d − ξ′F,SPΥξF,SP

)
, if ‖d‖ <∞ (i.e., uF,d ∈ U),

0, if ‖d‖ =∞ (i.e., uF,d ∈ U∞).
(A.5)

Note that r(uF,d) in (A.5) coincides with what is defined in (3.27). For any positive finite ζ, define

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≡ lim sup
n→∞

RDn(β̂n,ŵn , β̂n,SP ; ζ)

= lim sup
n→∞

sup
F∈F

EF [`ζ(β̂n,ŵn , βF )− `ζ(β̂n,SP , βF )], (A.6)

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≡ lim inf
n→∞

RDn(β̂n,ŵn , β̂n,SP ; ζ)

= lim inf
n→∞

inf
F∈F

EF [`ζ(β̂n,ŵn , βF )− `ζ(β̂n,SP , βF )], (A.7)

where RDn(β̂n,ŵn , β̂n,SP ; ζ) and RDn(β̂n,ŵn , β̂n,SP ; ζ) are defined in (3.12) and (3.11).

The proofs of the following Lemmas A.1 to A.4 can be found in Appendix B.

Lemma A.1. Suppose Conditions 1 - 3 hold. Then

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≤ max

{
sup

uF,d∈U
rζ(uF,d), 0

}
, (A.8)

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ min

{
inf

uF,d∈U
rζ(uF,d), 0

}
. (A.9)

Lemma A.2. Suppose Conditions 1 - 3 hold. Then

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ max

{
sup

uF,d∈U
rζ(uF,d), 0

}
, (A.10)
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AsyRDζ(β̂n,ŵn , β̂n,SP ) ≤ min

{
inf

uF,d∈U
rζ(uF,d), 0

}
. (A.11)

Lemma A.3. Suppose: (i) Conditions 1 - 3 hold; (ii) tr(AF ) > 0 and tr(BF ) > 0, with AF and BF defined

in (3.20). Then

sup
uF,d∈U

E
[(
ξ′F,SPΥξF,SP

)2] ≤ C, (A.12)

sup
uF,d∈U

E
[(
ξ̄′F,dΥξ̄F,d

)2] ≤ C. (A.13)

Lemma A.4. Suppose: (i) Conditions 1 - 3 hold; (ii) tr(AF ) > 0 and tr(BF ) > 0, with AF and BF defined

in (3.20). Then

lim
ζ→∞

sup
uF,d∈U

|rζ(uF,d)− r(uF,d)| = 0. (A.14)

Proof of Lemma 2

Proof. First, combining Lemmas A.1 and A.2 gives

AsyRDζ(β̂n,ŵn , β̂n,SP ) = max

{
sup

uF,d∈U
rζ(uF,d), 0

}
, (A.15)

AsyRDζ(β̂n,ŵn , β̂n,SP ) = min

{
inf

uF,d∈U
rζ(uF,d), 0

}
, (A.16)

for any finite ζ > 0. Then note that Lemma A.4 implies28

lim
ζ→∞

sup
uF,d∈U

rζ(uF,d) = sup
uF,d∈U

r(uF,d), and lim
ζ→∞

inf
uF,d∈U

rζ(uF,d) = inf
uF,d∈U

r(uF,d). (A.17)

Moreover, note that for uF,d ∈ U∞ (defined in (3.26)), (A.4) and (A.5) imply that rζ(uF,d) = r(uF,d) = 0.

Furthermore, since max{x, 0} and min{x, 0} are both continuous functions of x, the equalities in (A.17)

remain valid after applying these continuous functions; that is,

lim
ζ→∞

max

{
sup

uF,d∈U
rζ(uF,d), 0

}
= max

{
sup

uF,d∈U
r(uF,d), 0

}
, (A.18)

lim
ζ→∞

min

{
inf

uF,d∈U
rζ(uF,d), 0

}
= min

{
inf

uF,d∈U
r(uF,d), 0

}
. (A.19)

Combining (A.15), (A.18), and the definitions ofAsyRD(β̂n,ŵn , β̂n,SP ) in (3.14) and ofAsyRDζ(β̂n,ŵn , β̂n,SP )

in (A.6) gives the result in (3.28). Combining (A.16), (A.19), and the definitions of AsyRD(β̂n,ŵn , β̂n,SP )

in (3.13) and of AsyRDζ(β̂n,ŵn , β̂n,SP ) in (A.7) gives the result in (3.29).

28This is because Lemma A.4 means that for ∀ε > 0, there exists a large enough number C such that for all ζ ≥ C we have
supuF,d∈U

∣∣rζ(uF,d)− r(uF,d)
∣∣ < ε. This implies that for ζ ≥ C and ∀uF,d ∈ U , we have r(uF,d)− ε < rζ(uF,d) < r(uF,d) + ε.

The two inequalities here remain holding when the sup operator is applied on the three expressions, and note that ε does not
vary with uF,d, so for ζ ≥ C, we have supuF,d∈U r(uF,d)− ε < supuF,d∈U rζ(uF,d) < supuF,d∈U r(uF,d)+ ε. This in turn imme-

diately implies that for ζ ≥ C, we have
∣∣∣supuF,d∈U rζ(uF,d)− supuF,d∈U r(uF,d)

∣∣∣ < ε; that is, limζ→∞ supuF,d∈U rζ(uF,d) =

supuF,d∈U r(uF,d). Similar relationship for the infimum can be shown using the same argument.
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Proof of Theorem 1

Proof. By Lemma 2, it suffices to show that supuF,d∈U r(uF,d) ≤ 0 and infuF,d∈U r(uF,d) < 0. By the

definition of ξ̄F,d in (3.22), one gets

E(ξ̄′F,dΥξ̄F,d) =E(ξ′F,SPΥξF,SP ) + 2E[wF (ξF,P + d− ξF,SP )′ΥξF,SP ]

+ E[w2
F (ξF,P + d− ξF,SP )′Υ(ξF,P + d− ξF,SP )].

By the definitions of wF in (3.21) and of AF and BF in (3.20), this implies that for any uF,d ∈ U (defined

in (3.25)),

r(uF,d) = 2tr(AF )J1,F + [tr(AF )]2J2,F , (A.20)

where

J1,F ≡ E
[

(ξF,P + d− ξF,SP )′ΥξF,SP
tr(BF ) + (ξF,P + d− ξF,SP )′Υ(ξF,P + d− ξF,SP )

]
,

J2,F ≡ E
[

(ξF,P + d− ξF,SP )′Υ(ξF,P + d− ξF,SP )

[tr(BF ) + (ξF,P + d− ξF,SP )′Υ(ξF,P + d− ξF,SP )]2

]
.

Define

E ≡ [ −Ik Ik ]′Υ[ Ik 0k×k ], (A.21)

then J1,F and J2,F can be re-written as

J1,F = E

[
(ξ̃F + d̃)′E(ξ̃F + d̃)

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
,

J2,F = E

[
(ξ̃F + d̃)′D(ξ̃F + d̃)

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
,

where ξ̃F is defined in Condition 2(i), and D and d̃ are defined in (B.12).

First consider bounding J1,F . Define a function ηF (x) : R2k 7→ R2k for any x ∈ R2k as follows

ηF (x) ≡ x

tr(BF ) + x′Dx
.

Its derivative (transposed) is then

∂

∂x
ηF (x)′ =

I2k
tr(BF ) + x′Dx

− 2Dxx′

[tr(BF ) + x′Dx]2
.

Note that J1,F = E[ηF (ξ̃F + d̃)′E(ξ̃F + d̃)] and tr(EṼF ) = −tr[Υ(VF,SP − CF )] = −tr(AF ), where ṼF is

defined in Condition 2(i). Applying Lemma 2 in Hansen (2016), which is a matrix version of the Stein’s

lemma (Stein, 1956) to J1,F , one gets

J1,F =E
[
tr

(
∂

∂x
ηF (ξ̃F + d̃)′EṼF

)]
=E

[
−tr(AF )

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
− 2E

[
tr[D(ξ̃F + d̃)(ξ̃F + d̃)′EṼF ]

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
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=E
[

−tr(AF )

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
+ 2E

[
−(ξ̃F + d̃)′EṼFD(ξ̃F + d̃)

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
. (A.22)

By the definitions of AF , D and E (in (3.20), (B.12) and (A.21), respectively), one has

− (ξ̃F + d̃)′EṼFD(ξ̃F + d̃)

=(ξ̃F + d̃)′[ −Ik Ik ]′Υ(VF,SP − CF )Υ[ −Ik Ik ](ξ̃F + d̃)

≤ρmax[Υ1/2(VF,SP − CF )Υ1/2](ξ̃F + d̃)′[ −Ik Ik ]′Υ[ −Ik Ik ](ξ̃F + d̃)

=ρmax(AF )(ξ̃F + d̃)′D(ξ̃F + d̃), (A.23)

where the last equality holds due to ρmax[Υ1/2(VF,SP − CF )Υ1/2] = ρmax[Υ(VF,SP − CF )] = ρmax(AF ).

Combining the results in (A.22) and (A.23) gives

J1,F ≤E
[

−tr(AF )

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
+ 2E

[
ρmax(AF )(ξ̃F + d̃)′D(ξ̃F + d̃)

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]

=E
[

2ρmax(AF )− tr(AF )

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
− E

[
2ρmax(AF )tr(BF )

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
. (A.24)

Next consider bounding J2,F . By applying some algebraic operations to J2,F , one gets

J2,F =E

[
tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)− tr(BF )

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]

=E
[

1

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
− E

[
tr(BF )

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
. (A.25)

Combining (A.20), (A.24) and (A.25) gives

r(uF,d) ≤ 2tr(AF )E
[

2ρmax(AF )− tr(AF )

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
− 2tr(AF )E

[
2ρmax(AF )tr(BF )

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
+ [tr(AF )]2E

[
1

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
− [tr(AF )]2E

[
tr(BF )

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
=E

[
tr(AF )[4ρmax(AF )− tr(AF )]

tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)

]
− E

[
tr(AF )tr(BF )[4ρmax(AF ) + tr(AF )]

[tr(BF ) + (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
. (A.26)

If tr(AF ) ≥ 0 and tr(BF ) ≥ 0, then ρmax(AF ) ≥ 0, and then the second term in (A.26) will be non-positive.

If, in addition, tr(AF ) ≥ 4ρmax(AF ), then the first term in (A.26) will be non-positive. Together they imply

r(uF,d) ≤ 0 for any uF,d ∈ U , which in turn implies supuF,d∈U r(uF,d) ≤ 0. So, (3.16) holds in consequence.

If, furthermore, tr(BF ) > 0 for some F ∈ F , then tr(AF ) > 0 and ρmax(AF ) > 0, and then the second

term in (A.26) will be strictly negative. This implies r(uF,d) < 0 for some uF,d ∈ U , which in turn implies

infuF,d∈U r(uF,d) < 0. So, (3.15) holds in consequence.

Note that the proof here relies on Lemma 2, which requires tr(AF ) > 0 and tr(BF ) > 0 as premises, so

the effective conditions are those stated in the theorem.
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Proof of Lemma 3

Proof. For any given d, one has

1− α2 = lim
n→∞

PF

(√
n(β̂n,ŵn − βF ) ∈ CI1−α2

(∆n|d, V̂ )
)

≤ lim
n→∞

PF

(√
n(β̂n,ŵn − βF ) ∈ CI1−α2

(∆n|d, V̂ ), d ∈ CI1−α1
(d|β̂, V̂ )

)
+ lim
n→∞

PF

(
d /∈ CI1−α1

(d|β̂, V̂ )
)

≤ lim
n→∞

PF

(
βF ∈ CI1−α(β|β̂, V̂ )

)
+ α1,

where the first equality holds by the way in which CI1−α2(∆n|d, V̂ ) is constructed, the last inequality holds

by the definitions of CI1−α(β|β̂, V̂ ) in (3.31) and of CI1−α1
(d|β̂, V̂ ) in (3.30). The last inequality in turn

immediately implies the validity of (3.32) for α1 + α2 = α. Note that the validity of (3.32) does not

depend on the value d, so the confidence interval CI1−α(β|β̂, V̂ ) is uniformly valid regardless of the degree

of misspecification.
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Appendix B Proofs of the Lemmas in Appendix A

Proof of Lemma A.1

Proof. First I prove inequality (A.8). By the definition of supremum and the definition of AsyRDζ(β̂n,ŵn ,

β̂n,SP ) in (A.6), there exists a sequence of DGPs, denoted by {Fn}n∈N, such that

AsyRDζ(β̂n,ŵn , β̂n,SP ) = lim sup
n→∞

EFn [`ζ(β̂n,ŵn , βFn)− `ζ(β̂n,SP , βFn)].

The real sequence {EFn [`ζ(β̂n,ŵn , βFn) − `ζ(β̂n,SP , βFn)]}n∈N itself may not be convergent, but by the

definition of limsup, there exists a subsequence of {n}n∈N, denoted by {pn}n∈N, such that the correspond-

ing real subsequence {EFpn [`ζ(β̂n,ŵn , βFpn ) − `ζ(β̂n,SP , βFpn )]}n∈N is convergent. Let {Fpn}n∈N denote the

subsequence of DGPs corresponding to {pn}n∈N, then

AsyRDζ(β̂n,ŵn , β̂n,SP ) = lim
n→∞

EFpn [`ζ(β̂n,ŵn , βFpn )− `ζ(β̂n,SP , βFpn )]. (B.1)

Now consider the sequence of k-dimensional vectors {p1/2
n δFpn }n∈N, and let {p1/2

n δFpn ,ι}n∈N (ι = 1, . . . , k)

denote their ιth components. For ι = 1, one has either (i) lim supn→∞ |p
1/2
n δFpn ,ι| <∞, or (ii) lim supn→∞

|p1/2
n δFpn ,ι| = ∞. For case (i), there exists some subsequence {pn,ι}n∈N such that p

1/2
n,ι δFpn,ι ,ι → dι for

some dι ∈ R, by the definition of limsup. For case (ii), there exists some subsequence {pn,ι}n∈N such that

p
1/2
n,ι δFpn,ι ,ι →∞ or −∞, by the definition of limsup. In both cases, therefore, there exists some subsequence

{pn,ι}n∈N such that p
1/2
n,ι δFpn,ι ,ι → dι for some dι ∈ R∞. Since k is finite, one can sequentially apply the same

argument to all components ι = 2, . . . , k and let the resulting subsequence be denoted by {pn,k}n∈N. So far I

have shown that p
1/2
n,kδFpn,k → d for some d ∈ Rk∞. Then we consider {S(Fpn,k)}n∈N, the sequence of nuisance

parameter vectors in S induced by DGPs {Fpn,k}n∈N. {S(Fpn,k)}n∈N itself may not be convergent, but since

S is compact by Condition 3(i), then there exists a convergent subsequence, denoted by {S(Fp∗n)}n∈N, such

that S(Fp∗n) −→ s∗ with s∗ ∈ S. Moreover, by Condition 3(ii), there exists a DGP F ∗ in F such that

S(F ∗) = s∗. As a result, I have shown that there exists some subsequence {p∗n}n∈N of {pn}n∈N such that

p∗1/2n δFp∗n → d for some d ∈ R∞ and S(Fp∗n) −→ S(F ∗) for some F ∗ ∈ F . (B.2)

Note that for any subsequence of {pn}n∈N, the limit of the right hand side in (B.1) remains the same, which

implies

AsyRDζ(β̂n,ŵn , β̂n,SP ) = lim
n→∞

EFp∗n [`ζ(β̂n,ŵn , βFp∗n )− `ζ(β̂n,SP , βFp∗n )]. (B.3)

The definition of `(β̂n, β) in (2.1) and of `ζ(β̂n, β) in (3.10), as well as (A.3) suggest that in order to

prove (A.8), one needs to link the right hand side of (B.3) with Rζ(uF,d) and R̄ζ(uF,d) defined in (A.1) and

1Ruoyao Shi: Department of Economics, UC Riverside, USA. Email: ruoyao.shi@ucr.edu.
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(A.2). First consider the case where ‖d‖ <∞ in (B.2). By Condition 2(i) and Lemma 1(i),

p∗1/2n (β̂n,SP − βFp∗n )
d.−→ ξF,SP and p∗1/2n (β̂n,ŵn − βFp∗n )

d.−→ ξ̄F,d,

which combined with the continuous mapping theorem implies that

`(β̂n,SP , βFp∗n )
d.−→ ξ′F,SPΥξF,SP and `(β̂n,ŵn , βFp∗n )

d.−→ ξ̄′F,dΥξ̄F,d.

Since Υ is positive semi-definite, ξ′F,SPΥξF,SP and ξ̄′F,dΥξ̄F,d are both nonnegative. Note that the function

f(x) ≡ min{x, ζ} is a bounded continuous function of x ≥ 0 for fixed positive ζ. Applying the Portmanteau

lemma (e.g., Lemma 2.2 in Van der Vaart, 2000) and invoking (A.1) and (A.2), one gets

EFp∗n
[
`ζ(β̂n,SP , βFp∗n )

]
→ Rζ(uF∗,d) and EFp∗n

[
`ζ(β̂n,ŵn , βFp∗n )

]
→ R̄ζ(uF∗,d). (B.4)

Then consider the case where ‖d‖ =∞ in (B.2). By Condition 2(ii) and Lemma 1(ii),

p∗1/2n (β̂n,SP − βFp∗n )
d.−→ ξF,SP and p∗1/2n (β̂n,ŵn − βFp∗n )

d.−→ ξF,SP .

Using the same argument, one also gets (B.4) in this case. Combine (A.3), (B.3) and (B.4), one can unify

the two cases and write

AsyRDζ(β̂n,ŵn , β̂n,SP ) = rζ(uF∗,d), for some F ∗ ∈ F and some d ∈ Rk∞

≤ max

{
sup

uF,d∈U
rζ(uF,d), sup

uF,d∈U∞
rζ(uF,d)

}

= max

{
sup

uF,d∈U
rζ(uF,d), 0

}
.

This proves (A.8).

The proof of (A.9) follows the same argument and hence is omitted here.

Proof of Lemma A.2

Proof. First I prove inequality (A.10). By the definition of U in (3.25), ‖d‖ <∞ and δF = 0 for any F ∈ F
such that uF,d ∈ U . For any uF,d ∈ U , let NεF denote the smallest n such that n−1/2‖d‖ < εF , where εF

satisfies Condition 3(ii). Then by Condition 3(ii), for each n ≥ NεF , there is an Fn ∈ F with δFn = n−1/2d

and ‖S̄(Fn)− S̄(F )‖ ≤ n−κ/2C‖d‖κ for some C, κ > 0. For each n ≤ NεF , let Fn = F . Thus, a sequence of

DGPs {Fn}n∈N in F satisfying n1/2δFn → d and S̄(Fn) → S̄(F ) is constructed for any uF,d ∈ U . Recalling

the definition of S̄(F ) in (3.17), this immediately implies that for such {Fn}n∈N,

n1/2δFn → d ∈ Rk, VFn,SP → VF,SP , covFn → CF , and VFn,P → VF,P . (B.5)

The real sequence {EFn [`ζ(β̂n,ŵn , βFn)− `ζ(β̂n,SP , βFn)]}n∈N that corresponds to {Fn}n∈N may not be con-

vergent, but by the definition of lim sup, there exist a subsequence {pn}n∈N of {n}n∈N such that the corre-

sponding real sequence {EFpn [`ζ(β̂n,ŵn , βFpn )− `ζ(β̂n,SP , βFpn )]}n∈N is convergent and

lim
n→∞

EFpn [`ζ(β̂n,ŵn , βFpn )− `ζ(β̂n,SP , βFpn )] = lim sup
n→∞

EFn [`ζ(β̂n,ŵn , βFn)− `ζ(β̂n,SP , βFn)]. (B.6)
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Since {pn}n∈N is a subsequence of {n}n∈N, (B.5) implies that

n1/2δFpn → d ∈ Rk, VFpn ,SP → VF,SP , covFpn → CF , and VFpn ,P → VF,P . (B.7)

Combined with Condition 2(i) and Lemma 1(i), this implies that

p1/2
n (β̂n,SP − βFpn )

d.−→ ξF,SP , and p1/2
n (β̂n,ŵn − βFpn )

d.−→ ξ̄F,d,

which, combined with the continuous mapping theorem, in turn implies that

lim
n→∞

EFpn
[
`ζ(β̂n,SP , βFpn )

]
= Rζ(uF,d), and lim

n→∞
EFpn

[
`ζ(β̂n,ŵn , βFpn )

]
= R̄ζ(uF,d). (B.8)

This, combined with (B.6), the definition of AsyRDζ(β̂n,ŵn , β̂n,SP ) in (A.6), the definition of supremum and

the definition of r(uF,d) in (A.3), implies that for any uF,d ∈ U ,

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ lim sup
n→∞

EFn [`ζ(β̂n,ŵn , βFn)− `ζ(β̂n,SP , βFn)] = r(uF,d),

which further implies that

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ sup
uF,d∈U

r(uF,d). (B.9)

On the other hand, by the definition of U∞ in (3.26), for any uF,d ∈ U∞, ‖d‖ =∞ and either (i) δF = 0

or (ii) ‖δF ‖ > 0. For case (i), let Ik be a k × 1 vector of ones and let NεF denote the smallest n such

that n−1/4‖Ik‖1/2 = n−1/4k1/2 < εF , where εF satisfies Condition 3(ii). Then by Condition 3(ii), for each

n ≥ NεF , there is an Fn ∈ F with δFn = n−1/4Ik and ‖S̄(Fn)− S̄(F )‖ ≤ Cn−κ/4kκ/2 for some C, κ > 0. For

each n ≤ NεF , let Fn = F . For case (ii), let Fn = F for n = 1, 2, . . .. Thus, a sequence of DGPs {Fn}n∈N
in F satisfying n1/2δFn → ∞, δFn → F and S̄(Fn) → S̄(F ) is constructed for any uF,d ∈ U∞, regardless of

whether δF = 0 or ‖δF ‖ > 0. Recalling the definition of S̄(F ) in (3.17), this immediately implies that for

such {Fn}n∈N,

‖n1/2δFn‖ → ∞, VFn,SP → VF,SP , covFn → CF , and VFn,P → VF,P .

Then similar argument used to show (B.6) - (B.8) can be applied to show that there exists a subsequence

{pn}n∈N of {n}n∈N such that (B.6) and (B.8) are satisfied, with the help of Condition 2(ii) and Lemma 1(ii).

Combining this with the definition of AsyRDζ(β̂n,ŵn , β̂n,SP ) in (A.6), the definition of supremum and the

definition of r(uF,d) in (A.3), implies that for any uF,d ∈ U∞,

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ lim sup
n→∞

EFn [`ζ(β̂n,ŵn , βFn)− `ζ(β̂n,SP , βFn)] = 0. (B.10)

(A.10) immediately follows inequalities (B.9) and (B.10).

The proof of (A.11) follows the same argument and hence is omitted here.

Proof of Lemma A.3

Proof. For any F ∈ F , since ξF,SP ∼ N (0k×1, VF,SP ) by Condition 2, one gets

ξ′F,SPΥξF,SP
d.
= Z ′V 1/2

F,SPΥV
1/2
F,SPZ,

3



where Z ∼ N (0k×1, Ik×k). By Condition 3(i), and because Υ is a fixed matrix, there exists some constant

C such that

sup
F∈F

ρmax

(
Z ′V 1/2

F,SPΥV
1/2
F,SPZ

)
≤ C.

This implies that

sup
uF,d∈U

E
[(
ξ′F,SPΥξF,SP

)2] ≤ sup
uF,d∈U

ρ2
max

(
Z ′V 1/2

F,SPΥV
1/2
F,SPZ

)
· E[(Z ′Z)2] ≤ C,

where the second inequality holds because Z ∼ N (0k×1, Ik×k) and that VF,SP does not depend on d. This

proves (A.12).

By the definition of ξ̄F,d in (3.22) and that of ξ̃F in Condition 2(i), the Cauchy-Schwarz inequality and

the simple inequality 2|ab| ≤ a2 + b2 for any real numbers a and b, one gets

ξ̄′F,dΥξ̄F,d ≤ 2ξ′F,SPΥξF,SP + 2w2
F (ξF,P + d− ξF,SP )

′
Υ (ξF,P + d− ξF,SP )

= 2ξ′F,SPΥξF,SP + 2w2
F

(
ξ̃F + d̃

)′
D
(
ξ̃F + d̃

)
, (B.11)

where

D ≡ [ −Ik Ik ]′Υ[ −Ik Ik ], and d̃ ≡ (01×k, d
′)′. (B.12)

Combine (B.11) and the simple inequality (a+ b)2 ≤ 2(a2 + b2) for any real numbers a and b, one gets

(
ξ̄′F,dΥξ̄F,d

)2 ≤8
(
ξ′F,SPΥξF,SP

)2
+ 8

[
w2
F

(
ξ̃F + d̃

)′
D
(
ξ̃F + d̃

)]2

≤C + 8

[
w2
F

(
ξ̃F + d̃

)′
D
(
ξ̃F + d̃

)]2

, (B.13)

where the second inequality is by (A.12). By the definitions of wF in (3.21) and that of AF and BF in (3.20),

one has

w2
F

(
ξ̃F + d̃

)′
D
(
ξ̃F + d̃

)
=

[tr(AF )]2
(
ξ̃F + d̃

)′
D
(
ξ̃F + d̃

)
[
tr(BF ) +

(
ξ̃F + d̃

)′
D
(
ξ̃F + d̃

)]2

≤ Ctr(AF )

= Ctr(ΥVF,SP )− Ctr(ΥCF ),

where the inequality follows by tr(AF ) > 0, tr(BF ) > 0 and that (ξ̃F + d̃)′D(ξ̃F + d̃) ≥ 0 since Υ is positive

semi-definite. Combined with the simple inequality (a+ b)2 ≤ 2(a2 + b2), this implies that

E
[
w2
F

(
ξ̃F + d̃

)′
D
(
ξ̃F + d̃

)]2

≤ 2C[tr(ΥVF,SP )]2 + 2C[tr(ΥCF )]2

≤ 2C[tr(ΥVF,SP )]2 + 2C[tr(ΥVF,SP )]2 ≤ C, (B.14)

where the second inequality holds by Condition 2(i), Condition 3(i) and that the Cauchy-Schwarz inequality

implies CF ≤ max{VF,SP , VF,P } for any F ∈ F . Together, (B.13) and (B.14) imply (A.13), since the upper

bound does not depend on F .
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Proof of Lemma A.4

Proof. First note that

sup
uF,d∈U

∣∣E [min{ξ̄′F,dΥξ̄F,d, ζ} − ξ̄′F,dΥξ̄F,d
]∣∣

= sup
uF,d∈U

∣∣E [(ζ − ξ̄′F,dΥξ̄F,d) I{ξ̄′F,dΥξ̄F,d > ζ
}]∣∣

≤ sup
uF,d∈U

E
[∣∣ζ − ξ̄′F,dΥξ̄F,d∣∣ · I{ξ̄′F,dΥξ̄F,d > ζ

}]
≤ζ sup

uF,d∈U
E
[
I
{
ξ̄′F,dΥξ̄F,d > ζ

}]
+ sup
uF,d∈U

E
[(
ξ̄′F,dΥξ̄F,d

)
· I
{
ξ̄′F,dΥξ̄F,d > ζ

}]
≤2ζ−1 sup

uF,d∈U
E
[(
ξ̄′F,dΥξ̄F,d

)2] ≤ 2Cζ−1, (B.15)

where the first equality is by the fact that min{x, ζ} − x = (ζ − x) · I{x > ζ}; the first inequality is by

the Jensen’s inequality and the fact that an indicator function is always non-negative; the second inequality

holds because ζ > 0, ξ̄′F,dΥξ̄F,d ≥ 0, and the simple inequality |a − b| ≤ a + b for any non-negative real

numbers a and b; the third inequality holds by the Markov’s inequality;2 the fourth inequality is by (A.13)

in Lemma A.3.

By (A.12) in Lemma A.3 and the same argument, one can show that

sup
uF,d∈U

|E [min{ξF,SPΥξF,SP , ζ} − ξF,SPΥξF,SP ]| ≤ 2Cζ−1. (B.16)

Combining inequalities (B.15) and (B.16), the definitions of rζ(uF,d) and r(uF,d) in (A.4) and (A.5), and the

triangular inequality, one gets supuF,d∈U |rζ(uF,d)− r(uF,d)| ≤ 4Cζ−1, which immediately implies (A.14).

Appendix C Details on Section 2

The reasons for ŵn ∈ [0, 1] with probability one. Note that V̂n,SP + V̂n,P − Ĉn − Ĉ ′n is the sample

asymptotic variance of β̂n,P − β̂n,SP and recall that Υ is symmetric positive semi-definite, so the first

term in the denominator of (2.2) is positive with probability one; the second term is a quadratic form

with positive semi-definite Υ, so the denominator of (2.2) is positive with probability one. Moreover, if the

parametric restrictions are correctly specified or mildly misspecified, then VF,SP ≥ VF,P implies V̂n,SP ≥ V̂n,P
with probability one, which further implies V̂n,SP ≥ Ĉn together with the Cauchy-Schwarz inequality.3

Furthermore, if the parametric restrictions are severely misspecified, then V̂n,SP , V̂n,P and Ĉn having finite

probability limits (postulated in Condition 2) implies that the second term in the denominator approaches

the infinity while the other terms are finite. Together, these imply that the averaging weight ŵn ∈ [0, 1] with

probability one.

Computing asymptotic variance-covariance matrices via robust influence functions. Let ψF,SP (z)

denote the non-centered influence function of β̂n,SP , let ψF,P (z) denote that of β̂n,P , and let ψn,SP (z) and

2The first term is bounded using the Chebyshev’s inequality. Using the same argument as for the Markov’s inequality, I
can show that for non-negative random variable X and a > 0, E[X · I{X > a}] ≤ E(X2)/a, since E(X2) = E[X2 · I{X >
a}] + E[X2 · I{X ≤ a}] ≥ E[X2 · I{X > a}] ≥ aE[X · I{X > a}]. Applying this result to the second term gives the desired
inequality.

3Condition 2(i) postulates VF,SP ≥ VF,P , which is the case where the averaging is meaningful, otherwise β̂n,P dominates

β̂n,SP . Allowing for VF,SP < VF,P is also easy and discussed in Remark 2.

5



ψn,P (z) denote their sample analogs, respectively. Then

V̂n,SP =
1

n

n∑
i=1

ψn,SP (Zi)ψ
′
n,SP (Zi)−

[
1

n

n∑
i=1

ψn,SP (Zi)

]
·

[
1

n

n∑
i=1

ψn,SP (Zi)

]′
, (C.1)

V̂n,P =
1

n

n∑
i=1

ψn,P (Zi)ψ
′
n,P (Zi)−

[
1

n

n∑
i=1

ψn,P (Zi)

]
·

[
1

n

n∑
i=1

ψn,P (Zi)

]′
, (C.2)

Ĉn =
1

n

n∑
i=1

ψn,SP (Zi)ψ
′
n,P (Zi)−

[
1

n

n∑
i=1

ψn,SP (Zi)

]
·

[
1

n

n∑
i=1

ψn,P (Zi)

]′
. (C.3)

The asymptotic variance-covariance matrix estimates in (C.1) - (C.3) can then be plugged into (2.2) to

compute the averaging weight.

It is worth emphasizing that the influence functions need to be valid under potential misspecification (e.g.,

Ichimura and Lee, 2010), such that the estimators V̂n,SP , V̂n,P and Ĉn are consistent regardless of whether

the parametric restrictions hold or not. In other words, they must be robust against misspecification of the

parametric restrictions; otherwise the resulting averaging estimator might not conform to the asymptotic

theory in Section 3. Appendix D will illustrate this point using the partially linear model in Section 4.

Appendix D Details on Section 4

Robust influence function in partially linear models. In this example, the estimators are based on the

objective function Q(z, β, h) ≡ 1
2 [y−h1(x2)− (x1−h2(x2))′β]2 where z represents the vector of all observed

variables, so that QF (β, h) in (3.1) equals to EF [Q(Z, β, h)], where the expectation is taken with regard to

the distribution F of the data Z. Under DGP F , let h1F (s) ≡ EF (Y |s(X1, X2) = s) and h2F ≡ EF (X1|s(X1,

X2) = s) denote the conditional mean functions of Yi and X1i given s(X1i, X2i) = s.4 Since these functions

do not depend on β, the influence function of an estimator β̂n robust to potential misspecification of h can

be derived using Theorem 3.3 of Ichimura and Lee (2010). Borrowing their notation, one gets

∆1(z) ≡ DβQ(z, β, h) = −[y − h1(x2)− (x1 − h2(x2))′β](x1 − h2(x2)),

Dββ′Q(z, β, h) = (x1 − h2(x2))(x1 − h2(x2))′,

V0 =
d2Q(β, h)

dβdβ′
= Dββ′Q(β, h) = E[(X1 − h2(X2))(X1 − h2(X2))′],

DhQ(z, β, hF )[h] = − [y − h1F (x2)− (x1 − h2F (x2))′β](h1(x2)− h2(x2)′β),

Γ1(z) =
d

dβ′
DhQ(β, hF )[h]

= DβhQ(β, hF )[h]

= EF [(X1 − h2F (X2))′β(h1(X2)− h2(X2)′β]

+ EF [(Y − h1F (X2)− (X1 − h2F (X2))′β)h2(X2)]

= 0,

4Here s(X1, X2) = s is a shorthand notation I use to indicate conditioning on all the additively separable compo-
nents of s(X1, X2). For example, in the model (4.2) in Section 4, s(X1, X2) = s is a shorthand for the entire vector
(X′2, X11X21, X12X22, X13X23, X14X24)′ being fixed.
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where the last equality holds by the law of iterated expectations (i.e., first conditional on X2).5 By Theorem

3.3 of Ichimura and Lee (2010), the influence function of an estimator β̂n is

ψ(z) = −V −1
0 ∆1(z) (D.1)

= −{E[(X1 − h2(s(X1, X2))) · (X1 − h2(s(X1, X2)))′]}−1

· [y − h1(s(x1, x2))− (x1 − h2(s(x1, x2)))′β] · (x1 − h2(x1, x2)). (D.2)

For the parametric estimator, we restrict s to be a linear function of x2 only, i.e., s(x1, x2) = θ0 + x′2θ1,

then β̂n,P is just the least squares coefficient of X1 in a linear regression of Y on X1, X2 and an intercept.

Under this modeling restriction, both h1 and h2 are also linear functions of x2 only. Let X∗2i ≡ (1, X ′2i)
′, then

standard results of linear regressions imply that h1F,P (x2) ≡ EF (Y |X2 = x2) = x∗′2 γ1F and h2F,P (x2) ≡
EF (X1|X2 = x2) = x∗′2 γ2F with γ1F = [EF (X∗2X

∗′
2 )]−1EF (X∗2Y ) and γ2F = [EF (X∗2X

∗′
2 )]−1EF (X∗2X

′
1),

which can then be plugged into (D.2) to obtain the influence function of β̂n,P . In order to get its sample

version, let γ̂1,n ≡ (
∑n
i=1X

∗
2iX

∗′
2i)
−1

(
∑n
i=1X

∗
2iYi) and γ̂2,n ≡ (

∑n
i=1X

∗
2iX

∗′
2i)
−1

(
∑n
i=1X

∗
2iX

′
1i), then we

have

ψn,P (Zi) = −

[
1

n

n1∑
i=1

(X1i −X∗′2i γ̂2,n)(X1i −X∗′2i γ̂2,n)′

]−1

· {Yi −X∗′2i γ̂1,n − (X1i −X∗′2i γ̂2,n)′β̂n,SP } · (X1i −X∗′2i γ̂2,n), (D.3)

where note that β in the influence function is replaced by its robust estimator β̂n,SP .

For the semiparametric estimator, we use a series of basis functions GL(x1, x2) ≡ (g1L(x1, x2), g2L(x1, x2),

. . . , gLL(x1, x2))′ to approximate the unknown function s(x1, x2) in the original model, where L is an

integer that increases with n and glL(x1, x2) is a known function (e.g., polynomial functions) for each

l ∈ {1, . . . , L}. In this case, β̂n,SP is just the least squares coefficient of X1 in a linear regression of

Y on X1 and GL(X1, X2), and its influence function is what is in (D.2). The argument in Ackerberg,

Chen and Hahn (2012) and Ackerberg, Chen, Hahn and Liao (2014) allows us to treat this series ap-

proximation as the true model in estimating the asymptotic variance of β̂n,SP . To proceed, let λ̂1,n ≡(∑n
i=1G

L(X1i, x2i)G
L′(X1i, X2i)

)−1 (∑n
i=1G

L(X1i, x2i)Yi
)

and λ̂2,n ≡
(∑n

i=1G
L(X1i, x2i)G

L′(X1i, X2i)
)−1 (∑n

i=1G
L(X1i, x2i)X

′
1i

)
,

then we have

ψn,SP (Zi) = −

[
1

n

n1∑
i=1

(X1i −GL′(X1i, X2i)λ̂2,n)(X1i −GL′(X1i, X2i)λ̂2,n)′

]−1

· {Yi −GL′(X1i, X2i)λ̂1,n − (X1i −GL′(X1i, X2i)λ̂2,n)′β̂n,SP }

· (X1i −GL′(X1i, X2i)λ̂2,n), (D.4)

As a result, the averaging weight can be constructed by first plugging (D.3) and (D.4) into (C.1), (C.2)

and (C.3), and then plugging the latter into (2.2).

Two points are worth emphasizing here. First, β naturally arises in the influence functions (D.2) and

is invariant to how the conditional mean function h is modeled. As a result, when computing the sample

analogs of the influence functions using (D.3) and (D.4), β should be replaced by β̂n,SP , the estimator that

is consistent regardless of whether the joint normality restriction is correctly specified or not. Second, the

nuisance function h directly enters the influence function of β̂n. As a result, how h is modeled (by the linear

5Note that Γ1(z), the term in Ichimura and Lee (2010) that captures the impact of first step estimation error of h on the

asymptotic distribution of β̂n, is zero.
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function of x2 only or by the series approximation) affects the functional form of the influence functions,

even though neither (D.3) nor (D.4) contains a correction term for the first step estimation error of h.

Primitive conditions. For a specific model and specific estimators β̂n,SP and β̂n,P , Conditions 1 and 3 are

straightforward to verify, and Condition 2 can be verified under more primitive conditions. Let ‖ · ‖ indicate

the Euclidean norm of a vector and let ‖ · ‖L2
indicate the L2 norm of a function. The following condition

is the primitive condition of Condition 2 for the partially linear model in Section 4.

Condition 2′. For the partially linear model in (4.1) and the estimators described in Section 2, I assume

that the following condition holds for any F ∈ F , where 0 < M <∞ and τ > 0 are some generic constants.

(i) EF {[X1 − EF (X1|s(X1, X2))] · [X1 − EF (X1|s(X1, X2))]′} is positive definite.

(ii) EF {[U + s(X1, X2)−EF (s(X1, X2)|X2)]2[X1−EF (X1|X2)] · [X1−EF (X1|X2)]′} is positive definite.

(iii) For functions s(x1, x2) and h2F (x2) ≡ EF (X1|X2) = x∗′2 γ2F ,6 there exist ds, d2, πs,L and π2,L such

that ‖s(x1, x2) − GL′(x1, x2)πs,L‖L2 = O(L−ds) and ‖h2F (x2) − GL′(x2)π2,L‖L2 = O(L−d2) as L → ∞,

where GL(x1, x2) and GL(x2) are series basis functions of order L.

(iv) varF [Yi|X1, s(X1, X2)] ≤M <∞ and varF [X1|s(X1, X2)] ≤M .

(v) EF {‖X1 − EF [X1|s(X1, X2)]‖2+τ} ≤M .

(vi) The series order L is such that L→∞, L/n→ 0 and
√
nL−ds−d2 → 0 as n→ 0.

(vii) The covariance function (under F ) of (X ′1, X
′
2)′ is positive definite.

(viii) EF [‖X1‖2+τ ] ≤M and EF [‖X2‖2+τ ] ≤M .

Condition 2′(i) is the key identification requirement of βF . Condition 2′(i) - (vi) follow Assumption 2

and Theorem 2 in Donald and Newey (1994), which ensure the asymptotic normality of β̂n,SP based on

series first step. Among them, (i) and (ii) ensure that the asymptotic covariance matrix of β̂n,SP is well

define. (iii) implies that the nuisance functions can be approximated well by the series basis functions; (iv)

implies that they can be consistently estimated; (v) is the moment condition requires by the central limit

theorem; and (vi) gives the under-smoothing order of the series basis functions. (vii) is the key identification

requirement of βF,P , and (viii) is the usual moment condition for the asymptotic normality of β̂n,P based on

linear regression of Yi on (X ′1i, X
′
2i)
′.7

Verification of the primitive conditions. I now verify Conditions 1, 2′ and 3 for the Monte Carlo model

(4.2) and the estimators used in Section 4. Recall that in this model,

s(x1, x2) ≡ x′2θ1 + t(x1, x2), with t(x1, x2) ≡ ρ

 4∑
j=1

θ2j exp(x2j) +

4∑
j=1

θ3jx1jx2j

 . (D.5)

Because the misspecified model (4.3) only uses x′2θ1 as s(x1, x2), ρ controls the degree of misspecification.

Note that for ∀F ∈ F , the probability limit of the parametric least squares estimator (θ′0,F,P , β
′
F,P , θ

′
1,F,P )′

satisfy  θ0,F,P − θ0,F

βF,P − βF
θ1,F,P − θ1,F

 =

 1 EF (X ′1) EF (X ′2)

EF (X1) EF (X1X
′
1) EF (X1X

′
2)

EF (X2) EF (X2X
′
1) EF (X2X

′
2)


−1  EF [t(X1, X2)]

EF [X1t(X1, X2)]

EF [X2t(X1, X2)]

 , (D.6)

6This h2F (x2) function is defined in the partially linear model in Section 2, between (D.2) and (D.3), where x∗2 = (1, x′2)′.
7The joint asymptotic normality can be shown under Condition 2′ by invoking the Cramér-Wold device (not provided here).
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where (θ′0,F,P , β
′
F,P , θ

′
1,F,P )′ is the pseudo-true parameter values in the misspecified model (4.3) and (θ′0,F ,

β′F , θ
′
1,F )′ is the true parameter vector in model (4.2).8 The joint normal distribution of (X ′1, X

′
2)′ implies

that on the right hand side of (D.6), the entries of the first matrix are non-zero finite numbers, and the

second vector is proportional to ρ, since EF (XlX1jX2j) and EF [Xl exp(X2j)] are both finite (l = 1, 2 and

j = 1, 2, 3, 4).9 So, one gets

δF ≡ βF,P − βF = c1ρ (D.7)

with non-zero c1, where the non-zero constant c1 depends on the moments of polynomials up to the third

order and the exponential functions of (X ′1, X
′
2)′. As a result, as long as the values of ρ contain an open

set around 0, Condition 1(ii) is satisfied. Moreover, note that the nuisance function hF in Condition 1(i) is

s(x1, x2) and gγF in Condition 1(i) is x′2θ1,F,P , then one has

‖gγF − hF ‖L2 = ‖x′2(θ1,F,P − θ1,F )− t(x1, x2)‖L2 = c2|ρ|, for some c2 > 0,

where the second equality holds due to the definition of t(x1, x2) in (D.5), the joint normal distribution of

(X ′1, X
′
2)′ and (D.6). As a result, Condition 1(i) is satisfied.

The joint normal distribution of (X ′1, X
′
2)′ in Section 4 immediately implies that Condition 2′(vii), (viii)

and the second part of (iv) are satisfied.10 Moreover, the normal distribution of U and its independence from

(X ′1, X
′
2)′ ensure (ii) and the first part of Condition 2′(iv). In addition, the definition of s(x1, x2) in (D.5)

shows that X1 and s(X1, X2) are not perfectly collinear, indicating that Condition 2′(i) and (v) are satisfied.

Furthermore, note that s(x1, x2) only contains linear, quadratic and exponential functions of x1 and x2 (or

h2(x2) only contains linear function of x2 due to the joint normal distribution of (X ′1, X
′
2)′), which are all

four times continuously differentiable functions, so Condition 2′(iii) is satisfied with ds = d2 = 1
2 .11 Given

this, one can choose L such that L→∞, L/n→ 0 and L2/n→∞ to satisfy Condition 2′(vi).

To verify Condition 3, first recall that we have δF = c1ρ with non-zero c1, so δF belongs to a compact

set as long as ρ does. Second, note that the asymptotic covariance matrices of β̂n,SP and β̂n,P are

VF,SP = σ2
U · (EF {[X1 − EF (X1|s(X1, X2))] · [X1 − EF (X1|s(X1, X2))]′})−1

, (D.8)

VF,P = (EF {[X1 − EF (X1|X2)] · [X1 − EF (X1|X2)]′})−1

·
(
EF {[U + s(X1, X2)− EF (s(X1, X2)|X2)]2[X1 − EF (X1|X2)] · [X1 − EF (X1|X2)]′}

)
· (EF {[X1 − EF (X1|X2)] · [X1 − EF (X1|X2)]′})−1

, (D.9)

CF = (EF {[X1 − EF (X1|s(X1, X2))] · [X1 − EF (X1|s(X1, X2))]′})−1

· (EF {[U + s(X1, X2)− EF (s(X1, X2)|X2)] · [X1 − EF (X1|s(X1, X2))]′})

· (EF {[X1 − EF (X1|X2)] · [X1 − EF (X1|X2)]′})−1
, (D.10)

where σ2
U ≡ EF (U2). Given the specification in (4.2) (reiterated in (D.5)) and the joint normal distribution

of (X ′1, X
′
2)′ in Section 4, the following points can be verified.

1. h2F,P (·) = EF (X1|X2) defined before (D.3) is a 4× 1 vector-valued linear function of x2 that does not

depend on ρ; in particular, its jth component is h2F,P,j(x2) ≡ EF (X1j |X2 = x2) = 0.4 + 0.2
∑4
l=1 x2,l

for j = 1, 2, 3, 4.

8In particular, θ0,F = 0.
9The finite moments of exp(x2) can be shown using the moment generating function of the normally distributed X2. For

example, E{[exp(X2j)]
2} = E[exp(2X2j)] = MX2j

(2) = exp(2µ2j + 2σ2
2j) <∞, with µ2j = 2 and σ2

2j = 0.52.
10Note that conditional variance is bounded above by unconditional variance.
11s(x1, x2) is four times continuously differentiable and has eight arguments, so by the discussion that follows Assumption 3

in Newey (1997), ds = 4
8

= 1
2

. Similarly, h2(x2) is twice continuously differentiable and has four arguments, so d2 = 2
4

= 1
2

.
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2. Note that once the values of exp(X2j) and X1jX2j (j = 1, 2, 3, 4) are fixed, then so are the values of

X1j and X2j (j = 1, 2, 3, 4); and vice versa. For this reason, the function h2F (·) = EF (X1|s(X1, X2)) =

EF (X1|X2, X11X21, X12X22, X13X23, X14X24) defined before (D.2) does not depend on ρ, although its

functional form is difficult to obtain and hence is omitted here.12

3. By the specification in (4.2), we have

s(X1, X2)− EF (s(X1, X2)|X2) = ρ

4∑
j=1

θ3jX2j [X1j − EF (X1j |X2)] ≡ C3ρ, (D.11)

where C3 is a random variable that depends on X1 and X2.

Point 2 immediately implies that VF,SP in (D.8) equals to

VF,SP = σ2
U · [EF (WF,SPW

′
F,SP )]−1,

with WF,SP ≡ X1 − EF (X1|X2, X11X21, X12X22, X13X23, X14X24), (D.12)

which does not depend on ρ. Points 1 - 3 together imply that VF,P in (D.9) equals to

VF,P = [EF (WF,PW
′
F,P )]−1 · {EF [(U + C6ρ)2WF,PW

′
F,P ]} · [EF (WF,PW

′
F,P )]−1,

with WF,P ≡ X1 − EF (X1|X2), (D.13)

which is a quadratic function of ρ. Similarly, one can show that CF in (D.10) is a linear function of ρ. In

summary, S̄(F ) defined in (3.17) is a quadratic function of ρ; that is, for F ∈ F such that δF = c1ρ, there

exist some fixed vectors c4, c5 and c6 such that S̄(F ) = c4 + c5ρ+ c6ρ
2. This has two implications. First, as

long as ρ takes values from a compact set, so does S(F ) defined in (3.17), satisfying Condition 3(i). Second,

Condition 3(ii) is satisfied with κ = 2, εF = 1 and C being some constant depending on c4, c5 and c6 but

not ρ.

Verification of VF,SP ≥ VF,P in Condition 2(i). In the paragraph that follows Condition 2, I provided

intuition for VF,SP ≥ VF,P using the semiparametric efficiency bound and the Le Cam’s Third Lemma. For

a specific model, however, this result can often be verified directly. In what follows, I will use (D.12) and

(D.13) to verify it for the partially linear model and the parameterization in Section 4.

Recall that in (D.7) we show that δF ≡ βF,P − βF = c1ρ with non-zero c1. Also recall that the

presumption of Condition 2(i) is ‖d‖ < ∞ with n1/2δFn → d, then any sequence ρn of ρ values considered

here satisfies ρn =
δFn
c1

= O(n−1/2). Moreover, U is independent of WF,P due to the independence between

U and (X ′1, X
′
2)′. These together imply that in the scenario of Condition 2(i), VF,P in (D.13) equals to

σ2
U · [EF (WF,PW

′
F,P )]−1. Comparing it with (D.12), it is obvious that EF (WF,SPW

′
F,SP ) ≤ EF (WF,PW

′
F,P )

since WF,SP conditions on more variables. This further implies that VF,SP ≥ VF,P .

More Monte Carlo results. This subsection reports Monte Carlo results for the second, the third and

the fourth coordinates of β (i.e., β2, β3 and β4). Similar results for β1, the first coordinate of β, are reported

in Figure 2 and Table 1 in Section 4.

Figures D.1 - D.3 plot the Monte Carlo distributions (kernel densities) of the averaging estimator β̂n,ŵn
(thick solid lines) for representative ρ values. Figure D.1 is for β2, Figure D.2 is for β3 and Figure D.3 is for

β4. In the same figures, the normal distributions based on the naive inference method with the naive standard

12See Footnote 4 for details on EF (X1|s(X1, X2)).
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error are represented by the thick dashed lines (one randomly chosen Monte Carlo replicate) and dotted lines

(averaged over all Monte Carlo replicates). It is obvious that the naive inference method underestimates the

randomness in the averaging estimators β̂n,ŵn,2, β̂n,ŵn,3 and β̂n,ŵn,4, since it treats the averaging weight ŵn

as non-random.

Tables D.1 - D.3 report for different ρ values the rejection rates of β̂n,SP with the common standard

error and those of β̂n,ŵn with both the naive and the two-step inference methods (S = 1000 random draws

in the second step). Table D.1 is for β2, Table D.2 is for β3 and Table D.3 is for β4. I consider two naive

inference methods for β̂n,ŵn . The “Naive” one uses the common estimators of VF,P and CF when computing

the standard error, but they can be biased under misspecification (recall the discussion after (C.3) for

details). The “Naive (robust SE)” one uses the robust influence function ψn,P (z), which is robust under

misspecification, and (C.2) - (C.3) when computing the standard error. For the “Size” columns, the test

value is the true value of the coordinate (i.e., 3 for β2, 2 for β3 and 1 for β4); for the “Power” columns, the

test value is 0. Table D.1 - D.3 also report the average ratios between the lengths of the two-step confidence

intervals of β̂n,ŵn,j and of the standard confidence intervals of β̂n,SP,j (j = 2, 3, 4).

All these results are categorically similar to those for β1.

Appendix E Justification for VSP ≥ VP in Condition 2

Justification for Condition 2(i)

This section provides rationale of VSP ≥ VP in Condition 2(i) based on the semiparametric efficiency theory

and the Le Cam’s Third Lemma. (I suppress the subscript F throughout this subsection for notational

simplicity.) What follows is not the proof of Condition 2(i), since Condition 2 is a maintained assumption

and can be verified with corresponding primitive conditions for a specific model (like Appendix D for the

partially linear model). This subsection merely argues that VSP ≥ VP in Condition 2(i) holds for quite

general semiparametric models as it does not require much more than the setup of the semiparametric

model.

Consider a set P consisting of densities f(z|β, βP , h, η), where h is the nuisance parameter identified

by the objective function R(h) in (3.2), β is the parameter of interest identified by h and the objective

function Q(β, h) in (3.1), βP is the parameter identified by gγ and the objective function Q(β, gγ) in (3.8),13

and let η ∈ E denote the parameter that determines the features of the distribution of Z other than those

characterized by β, βP or h.14 I maintain the assumption that the true density is in P; in other words, P is

the semiparametric model. Let VSP and VP denote the efficiency bounds of β and βP , respectively.

Let δ ≡ βP−β, then the densities in P can be rewritten as f(z|β, β+δ, h, η). For any f(z|β, β+δ, h, η) ∈ P,

one can define a parametric model (a subset of P) that incorporates the parametric restriction

Pβ,δ,γ ≡ {f(z|β, β + δ, gγ , η) : β, δ ∈ Rk, γ ∈ Rt;

γ is identified by the objective function R(gγ) in (3.7);

δ = 0 only if h = gγ for some γ ∈ Rt
}
.

Note that this parametric model internalizes the parametric restriction and Condition 1(i) that the parametric

restriction leads to bias if misspecified. Note that Pβ,δ,γ may or may not include f(z|β, β + δ, h, η) itself,

depending on whether h admits the parametric restriction gγ .

13Recall that gγ is a given parametric function characterized by γ ∈ Rt, which is identified by the objective function R(gγ)
in (3.7). In fact, for given gγ function, one can rewrite f(z|β, βP , h, η) as f(z|β, βP , h, gγ , η) to make the dependence of βP on
γ explicit, but I instead suppress gγ for notational simplicity.

14This follows the setup in the proof of Lemma 1 in Ackerberg et al. (2014). η may have infinite dimension.
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Figure D.1: Distributions of the 2nd Coordinate of β̂n,ŵn for the Partially Linear Model

(a) Correct (ρ = 0): Distribution of β̂n,ŵn,2 (b) Misspecification (ρ = 0.2): Distribution of β̂n,ŵn,2

(c) Misspecification (ρ = 0.4): Distribution of β̂n,ŵn,2 (d) Misspecification (ρ = 0.6): Distribution of β̂n,ŵn,2

(e) Misspecification (ρ = 0.8): Distribution of β̂n,ŵn,2 (f) Misspecification (ρ = 1): Distribution of β̂n,ŵn,2

Notes: (1) All distributions are based on R = 10000 Monte Carlo replicates, n = 1000 sample size.

(2) Black solid lines represent the distributions of the second coordinate of β̂n,ŵn
, the averaging estimator of β2. Teal dashed and dotted lines both represent

the asymptotic distribution of β̂n,ŵn
if the naive inference method, which takes ŵn as fixed, is used. The former show such asymptotic distributions for a

randomly chosen MC replicate, while the later show such asymptotic distributions averaged over all MC replicates. They highlight that the naive inference
method underestimates the randomness in β̂n,ŵn

.

(3) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Figure D.2: Distributions of the 3rd Coordinate of β̂n,ŵn for the Partially Linear Model

(a) Correct (ρ = 0): Distribution of β̂n,ŵn,3 (b) Misspecification (ρ = 0.2): Distribution of β̂n,ŵn,3

(c) Misspecification (ρ = 0.4): Distribution of β̂n,ŵn,3 (d) Misspecification (ρ = 0.6): Distribution of β̂n,ŵn,3

(e) Misspecification (ρ = 0.8): Distribution of β̂n,ŵn,3 (f) Misspecification (ρ = 1): Distribution of β̂n,ŵn,3

Notes: (1) All distributions are based on R = 10000 Monte Carlo replicates, n = 1000 sample size.

(2) Black solid lines represent the distributions of the third coordinate of β̂n,ŵn
, the averaging estimator of β3. Teal dashed and dotted lines both represent

the asymptotic distribution of β̂n,ŵn
if the naive inference method, which takes ŵn as fixed, is used. The former show such asymptotic distributions for a

randomly chosen MC replicate, while the later show such asymptotic distributions averaged over all MC replicates. They highlight that the naive inference
method underestimates the randomness in β̂n,ŵn

.

(3) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Figure D.3: Distributions of the 4th Coordinate of β̂n,ŵn for the Partially Linear Model

(a) Correct (ρ = 0): Distribution of β̂n,ŵn,4 (b) Misspecification (ρ = 0.2): Distribution of β̂n,ŵn,4

(c) Misspecification (ρ = 0.4): Distribution of β̂n,ŵn,4 (d) Misspecification (ρ = 0.6): Distribution of β̂n,ŵn,4

(e) Misspecification (ρ = 0.8): Distribution of β̂n,ŵn,4 (f) Misspecification (ρ = 1): Distribution of β̂n,ŵn,4

Notes: (1) All distributions are based on R = 10000 Monte Carlo replicates, n = 1000 sample size.

(2) Black solid lines represent the distributions of the fourth coordinate of β̂n,ŵn
, the averaging estimator of β4. Teal dashed and dotted lines both represent

the asymptotic distribution of β̂n,ŵn
if the naive inference method, which takes ŵn as fixed, is used. The former show such asymptotic distributions for a

randomly chosen MC replicate, while the later show such asymptotic distributions averaged over all MC replicates. They highlight that the naive inference
method underestimates the randomness in β̂n,ŵn

.

(3) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Table D.1: Rejection Rates for the 2nd Coordinate of β̂n,ŵn in the Partially Linear Model (5% Level)

ρ β̂n,SP β̂n,ŵn CI Length
Naive Naive (robust SE) Two-step CI(β̂n,ŵn )

CI(β̂n,SP )Size Power Size Power Size Power Size Power
0.00 9.19% 24.71% 9.20% 64.11% 9.10% 63.93% 1.55% 10.96% 33.1069
0.05 10.03% 25.49% 13.89% 66.46% 13.60% 66.38% 1.73% 14.32% 33.1784
0.10 9.36% 23.99% 18.18% 65.45% 17.99% 65.38% 1.77% 16.07% 33.2881
0.15 8.94% 24.48% 21.56% 63.96% 21.39% 63.89% 2.01% 18.84% 33.4046
0.20 9.80% 24.67% 22.22% 61.40% 22.06% 61.36% 2.48% 22.26% 33.5380
0.25 9.34% 24.71% 21.00% 58.04% 20.96% 57.98% 2.86% 23.80% 33.6886
0.30 9.93% 24.78% 20.19% 53.85% 20.10% 53.83% 3.67% 25.05% 33.8610
0.35 9.56% 24.86% 19.26% 51.33% 19.21% 51.24% 4.08% 26.55% 33.9920
0.40 9.85% 25.03% 17.26% 48.73% 17.21% 48.71% 4.71% 26.65% 34.1516
0.45 9.11% 23.67% 15.68% 44.38% 15.67% 44.35% 4.92% 25.28% 34.2996
0.50 9.99% 24.93% 15.83% 43.27% 15.79% 43.22% 5.67% 26.60% 34.4368
0.55 9.95% 24.79% 14.70% 41.33% 14.65% 41.29% 5.54% 26.01% 34.5620
0.60 9.43% 24.07% 13.32% 39.86% 13.32% 39.80% 5.57% 25.21% 34.6631
0.65 9.64% 24.30% 12.89% 37.71% 12.88% 37.73% 6.00% 24.58% 34.7839
0.70 9.74% 24.48% 13.03% 36.81% 13.04% 36.81% 6.25% 24.56% 34.8843
0.75 9.68% 24.40% 12.19% 35.12% 12.15% 35.11% 6.10% 23.76% 34.9779
0.80 10.40% 24.34% 12.28% 34.57% 12.28% 34.56% 6.40% 23.90% 35.0621
0.85 9.94% 24.49% 11.89% 34.28% 11.89% 34.28% 6.40% 23.52% 35.1280
0.90 9.93% 24.92% 11.90% 33.84% 11.88% 33.82% 6.41% 23.66% 35.2114
0.95 9.93% 24.16% 11.43% 32.50% 11.42% 32.52% 6.31% 22.65% 35.2659
1.00 9.69% 24.71% 11.30% 32.19% 11.30% 32.18% 6.24% 22.80% 35.3216
1.05 9.98% 25.03% 11.41% 32.58% 11.41% 32.55% 6.43% 22.92% 35.3794
1.10 10.46% 24.29% 11.98% 31.07% 11.98% 31.05% 6.75% 21.94% 35.4232
1.15 9.80% 24.67% 10.98% 31.84% 10.95% 31.85% 6.59% 22.27% 35.4762
1.20 10.11% 24.46% 10.77% 30.80% 10.77% 30.79% 6.23% 21.67% 35.5112
1.25 10.22% 23.85% 11.30% 29.97% 11.30% 29.96% 6.68% 21.26% 35.5386
1.30 10.43% 24.41% 11.34% 30.03% 11.33% 30.02% 6.41% 21.53% 35.5749

Notes: (1) This table reports the inference results for the second coordinates of β̂n,ŵn
, the averaging estimator of β2.

(2) All results are based on R = 10000 Monte Carlo replicates. The two-step inference method uses S = 1000 replicates to simulate the distribution of
ξ̄F,d ≡ (1 − wF )ξF,SP + wF (ξF,P + d) in (3.22).

(3) The naive inference methods treat the averaging weight ŵn as non-random, and hence underestimate the randomness in β̂n,ŵn
. Two naive methods

are reported here: the first uses the common estimators of VF,P and CF , which might be biased under misspecification (see the discussion after (C.3)

for details); and the second combines V̂n,P and Ĉn given in (C.2) and (C.3) with the robust influence function ψn,P (z), which are robust under

misspecification (robust SE).
(4) The test value for the “Size” columns is 3, the true value of β2; the test value for the “Power” columns is 0.

(5) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Table D.2: Rejection Rates for the 3rd Coordinate of β̂n,ŵn in the Partially Linear Model (5% Level)

ρ β̂n,SP β̂n,ŵn CI Length
Naive Naive (robust SE) Two-step CI(β̂n,ŵn )

CI(β̂n,SP )Size Power Size Power Size Power Size Power
0.00 9.35% 16.49% 9.42% 46.84% 9.22% 46.65% 1.80% 6.06% 31.8093
0.05 9.69% 16.52% 14.45% 52.31% 14.17% 52.17% 1.93% 8.16% 31.8198
0.10 9.49% 16.33% 20.92% 53.27% 20.61% 53.14% 2.20% 10.44% 31.8614
0.15 10.07% 16.77% 25.42% 52.54% 25.21% 52.52% 2.78% 13.99% 31.9477
0.20 9.63% 17.04% 25.25% 50.24% 25.09% 50.21% 3.20% 17.46% 31.0517
0.25 9.65% 17.02% 23.98% 47.67% 23.86% 47.65% 4.42% 20.00% 32.1615
0.30 10.15% 16.74% 22.78% 43.62% 22.56% 43.59% 5.70% 20.86% 32.3306
0.35 9.61% 16.22% 20.77% 40.84% 20.76% 40.77% 6.25% 21.78% 32.4561
0.40 9.90% 16.80% 19.42% 38.84% 19.35% 38.83% 7.05% 23.04% 32.6202
0.45 10.06% 16.79% 18.22% 35.95% 18.20% 35.87% 7.97% 22.56% 32.7834
0.50 10.25% 15.83% 16.34% 32.80% 16.28% 32.77% 7.71% 21.51% 32.9379
0.55 9.89% 16.35% 15.58% 31.71% 15.56% 31.67% 8.12% 21.49% 33.0857
0.60 10.37% 16.99% 15.40% 30.73% 15.35% 30.74% 8.68% 21.88% 33.2150
0.65 9.91% 16.83% 14.31% 29.00% 14.30% 29.00% 8.37% 20.75% 33.3506
0.70 10.14% 17.00% 13.90% 28.56% 13.86% 28.51% 8.43% 20.84% 33.4695
0.75 9.46% 16.54% 12.88% 26.52% 12.87% 26.50% 8.05% 19.66% 33.5899
0.80 10.62% 17.09% 13.44% 26.64% 13.42% 26.60% 8.71% 20.37% 33.6846
0.85 9.89% 16.79% 12.35% 25.31% 12.35% 25.31% 8.05% 19.32% 33.7756
0.90 10.71% 17.31% 12.88% 25.08% 12.87% 25.10% 8.72% 19.34% 33.8567
0.95 10.64% 16.45% 12.50% 23.82% 12.49% 23.81% 8.11% 18.27% 33.9313
1.00 10.08% 16.81% 12.13% 23.45% 12.12% 23.44% 8.02% 18.17% 33.9944
1.05 10.93% 16.74% 12.61% 23.32% 12.61% 23.30% 8.63% 18.13% 34.0518
1.10 10.58% 17.66% 12.37% 23.85% 12.36% 23.84% 8.58% 18.72% 34.1105
1.15 10.69% 17.19% 12.31% 22.54% 12.32% 22.53% 8.35% 18.01% 34.1666
1.20 10.91% 17.07% 12.18% 22.46% 12.17% 22.41% 8.71% 17.61% 34.2091
1.25 11.08% 17.57% 12.51% 22.91% 12.52% 22.93% 8.63% 17.98% 34.2507
1.30 11.08% 17.38% 12.50% 21.84% 12.49% 21.86% 8.75% 17.59% 34.2906

Notes: (1) This table reports the inference results for the third coordinates of β̂n,ŵn
, the averaging estimator of β3.

(2) All results are based on R = 10000 Monte Carlo replicates. The two-step inference method uses S = 1000 replicates to simulate the distribution of
ξ̄F,d ≡ (1 − wF )ξF,SP + wF (ξF,P + d) in (3.22).

(3) The naive inference methods treat the averaging weight ŵn as non-random, and hence underestimate the randomness in β̂n,ŵn
. Two naive methods

are reported here: the first uses the common estimators of VF,P and CF , which might be biased under misspecification (see the discussion after (C.3)

for details); and the second combines V̂n,P and Ĉn given in (C.2) and (C.3) with the robust influence function ψn,P (z), which are robust under

misspecification (robust SE).
(4) The test value for the “Size” columns is 2, the true value of β3; the test value for the “Power” columns is 0.

(5) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Table D.3: Rejection Rates for the 4th Coordinate of β̂n,ŵn in the Partially Linear Model (5% Level)

ρ β̂n,SP β̂n,ŵn CI Length
Naive Naive (robust SE) Two-step CI(β̂n,ŵn )

CI(β̂n,SP )Size Power Size Power Size Power Size Power
0.00 10.25% 11.89% 10.34% 24.59% 10.19% 24.24% 1.61% 2.57% 33.1842
0.05 9.75% 11.86% 15.86% 34.95% 15.67% 34.70% 2.00% 3.43% 33.1979
0.10 9.60% 11.69% 23.23% 38.97% 23.00% 38.78% 1.97% 4.47% 33.2342
0.15 9.61% 11.45% 27.28% 40.30% 27.13% 40.29% 2.58% 5.88% 33.2914
0.20 9.26% 11.05% 27.23% 39.53% 27.16% 39.41% 3.19% 8.01% 33.3738
0.25 9.52% 11.28% 26.18% 36.56% 26.08% 36.48% 4.38% 10.66% 33.4788
0.30 10.48% 11.81% 25.09% 34.94% 25.09% 34.85% 6.25% 13.17% 33.6082
0.35 10.01% 11.59% 22.91% 32.41% 22.87% 32.35% 7.43% 14.00% 33.7167
0.40 8.75% 10.72% 19.98% 29.64% 19.96% 28.59% 7.45% 14.08% 33.8650
0.45 9.77% 11.76% 19.52% 26.84% 19.54% 26.77% 8.63% 15.06% 34.0064
0.50 9.53% 11.68% 18.34% 25.77% 18.33% 25.71% 8.81% 15.00% 34.1383
0.55 10.01% 11.73% 17.10% 23.62% 17.09% 23.57% 8.96% 14.76% 34.2743
0.60 9.84% 11.79% 16.38% 23.08% 16.38% 23.08% 8.82% 14.94% 34.3891
0.65 10.58% 12.45% 15.89% 21.82% 15.86% 21.77% 9.62% 14.52% 34.5273
0.70 9.89% 11.50% 14.72% 20.47% 14.67% 20.49% 8.77% 13.84% 34.6379
0.75 10.26% 12.13% 14.46% 20.10% 14.45% 20.11% 8.69% 13.84% 34.7625
0.80 10.48% 12.44% 14.12% 19.43% 14.11% 19.44% 9.18% 13.83% 34.8632
0.85 10.07% 11.54% 13.32% 18.49% 13.30% 18.47% 8.36% 12.68% 34.9520
0.90 11.21% 12.84% 14.21% 18.65% 14.20% 18.65% 9.07% 13.43% 35.0439
0.95 11.84% 13.21% 14.45% 18.67% 14.43% 18.66% 9.36% 13.47% 35.1175
1.00 10.83% 12.16% 13.06% 17.49% 13.03% 17.49% 8.21% 12.65% 35.1874
1.05 11.01% 12.42% 13.15% 17.24% 13.15% 17.25% 8.79% 12.42% 35.2540
1.10 11.90% 13.29% 13.68% 17.32% 13.66% 17.32% 8.80% 12.65% 35.3121
1.15 11.26% 12.32% 12.76% 16.22% 12.77% 16.22% 8.39% 11.92% 35.3659
1.20 11.22% 12.93% 12.98% 17.44% 12.99% 17.43% 8.58% 12.29% 35.4167
1.25 11.12% 12.97% 12.85% 16.68% 12.84% 16.67% 8.78% 12.54% 35.4533
1.30 11.85% 13.16% 12.97% 16.79% 13.00% 16.79% 8.77% 12.14% 35.4980

Notes: (1) This table reports the inference results for the fourth coordinates of β̂n,ŵn
, the averaging estimator of β4.

(2) All results are based on R = 10000 Monte Carlo replicates. The two-step inference method uses S = 1000 replicates to simulate the distribution of
ξ̄F,d ≡ (1 − wF )ξF,SP + wF (ξF,P + d) in (3.22).

(3) The naive inference methods treat the averaging weight ŵn as non-random, and hence underestimate the randomness in β̂n,ŵn
. Two naive methods

are reported here: the first uses the common estimators of VF,P and CF , which might be biased under misspecification (see the discussion after (C.3)

for details); and the second combines V̂n,P and Ĉn given in (C.2) and (C.3) with the robust influence function ψn,P (z), which are robust under

misspecification (robust SE).
(4) The test value for the “Size” columns is 1, the true value of β4; the test value for the “Power” columns is 0.

(5) See Section 4 for the details of the Monte Carlo experiments.
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If the density f(z|β, β+ δ, h, η) itself belongs to Pβ,δ,γ (i.e., h = gγ for some γ ∈ Rt), then the parametric

restriction is correctly specified, and Pβ,δ,γ is a parametric submodel – that is, a parametric model that

includes the true DGP – like that defined by Bickel, Klaassen, Ritov and Wellner (1993, Definition 1 on

page 46) or Tsiatis (2006, page 59). As a result, one has VSP ≥ VP by the definition of the semiparametric

efficiency bound – that is, the efficiency bound of the semiparametric model is the supremum of efficiency

bounds of all parametric submodels – such as equation (2) on page 46 in Bickel et al. (1993) or equation

(4.16) in Tsiatis (2006). At the same time, the construction of Pβ,δ,γ dictates that δ = 0 and β = βP

when f(z|β, β + δ, h, η) ∈ Pβ,δ,γ . This implies that the statement VSP ≥ VP in Condition 2(i) is a plausible

condition when the parametric restriction is correctly specified.

Remark 3. By the definition of the efficiency bounds, one has VSP ≥ VSP and VP ≥ VP , and the equality

holds if the corresponding estimator is efficient. Because I have shown above that VSP ≥ VP , the statement

VSP ≥ VP in Condition 2(i) only means that β̂n,P is at least as efficient as β̂n,SP , but does not require β̂n,P

to be efficient in general. For instance, if VSP > VP or VSP > VSP , then there is room between VSP and

VP such that it is possible that the asymptotic variance VP of some inefficient parametric estimator β̂n,P

satisfies VSP > VP .15

In the following I show that the relationship VSP ≥ VP remains invariant if the parametric restriction devi-

ates from the correctly specified case to the mildly misspecified case. For any fixed density f(z|, β∗, β∗, gγ∗ , η∗)
in Pβ∗,δ∗,γ∗ (i.e., δ∗ = 0 by the construction of Pβ∗,δ∗,γ∗), let P denote the resulting probability measure, and

let Pn = P be a sequence of such probability measures (same for all n ∈ N). Note that Pn corresponds to the

case where the parametric restriction is correctly specified. For any nuisance function h that does not admit

the functional form gγ , one has f(z|β∗, β∗ + δ, h, η∗) /∈ Pβ∗,δ∗,γ∗ and δ 6= 0 by the construction of Pβ∗,δ∗,γ∗ .
Inspired by Theorem 7.2 in Van der Vaart (2000), consider a sequence of such nuisance functions, denoted

by hn, such that the resulting densities f(z|β∗, β∗ + δn, hn, η
∗) satisfy δn = dn√

n
, dn → d for some d ∈ Rk

with ‖d‖ ∈ (0,∞) and the corresponding gγn are gγ∗ . Note that the sequence of hn, by the construction

of Pβ∗,δ∗,γ∗ , converges to gγ∗ , since the corresponding δn converges to zero. Let Qn denotes the resulting

sequence of probability measures, and it corresponds to the case where the parametric restriction is mildly

misspecified. Under a technical condition called differentiable in quadratic mean at β∗,16 the log likelihood

ratio between Qn and Pn admits the following Taylor expansion with respect to βP (i.e., β∗ + δn) around

β∗:

log

n∏
i=1

dQn
dPn

= log

n∏
i=1

fn(Zi|β∗, β∗ + δn, hn, η
∗)

f(Zi|β∗, β∗, gγ∗ , η∗)

= d′

(
1√
n

n∑
i=1

˙̀
βP (Zi)

)
− 1

2
d′

(
− 1

n

n∑
i=1

῭
βP (Zi)

)
d+ op(1),

where ˙̀
βP (z) ≡ ∂f(z|β∗,β∗,gγ∗ ,η∗)/∂βP

f(z|β∗,β∗,gγ∗ ,η∗)
is the score function with respect to βP under Pn evaluated at β∗,

and ῭
βP (z) ≡ ∂2f(z|β∗,β∗,gγ∗ ,η∗)/∂β∂β′

f(z|β∗,β∗,gγ∗ ,η∗)
is the corresponding Hessian matrix. Note that EPn [ ˙̀

βP (Zi)] = 0 and

EPn [−῭
βP (Zi)] = IβP (the Fisher information matrix with respect to βP ). By the central limit theorem and

15A well known special case is the inverse probability weighted (IPW) estimator of the average treatment effect (ATE) with
series logit propensity score. For the ATE, Hahn (1998) proves that VSP = VP under the correct specification of the parametric
restriction, and Hirano, Imbens and Ridder (2003) show that the IPW estimator with series logit propensity score satisfies
VSP = VSP . Together, these require that the parametric estimator has to be efficiency for VSP ≥ VP to hold (with equality).
I thank an anonymous referee for pointing this out.

16See (7.1) in Van der Vaart (2000), for example. This assumption is common and maintained for the majority of models in
the M estimation literature.
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the Cramér-Wold theorem, it can be shown that
√
n(β̂n,SP − β)
√
n(β̂n,P − β)

log
∏n
i=1

dQn
dPn

 Pn−→ N


 0

0

− 1
2d
′IβP d

 ,

 VSP C τSP

C VP τP

τ ′SP τ ′P d′IβP d


 ,

where the symbol
Pn−→ means that the left hand side converges in distribution to the right hand side if Pn is

the true distribution of the data. This fulfills the assumption of the Le Cam’s Third Lemma (Example 6.7

in Van der Vaart, 2000), so by this lemma one gets( √
n(β̂n,SP − β)
√
n(β̂n,P − β)

)
Qn−→ N

((
τSP

τP

)
,

(
VSP C

C VP

))
. (E.1)

That is, the Le Cam’s Third Lemma implies that the asymptotic variances and covariance of β̂n,SP and β̂n,P

remains invariant whether the parametric restriction is correctly specified or mildly misspecified. Together

with the earlier condition that VSP ≥ VP under the correct specification, it provides the rationale behind

VSP ≥ VP in Condition 2(i).

Remark 4. In (E.1), τSP ≡ EPn [ψSP (Zi) ˙̀
βP (Zi)]d and τP ≡ EPn [ψP (Zi) ˙̀

βP (Zi)]d by the central limit

theorem, where ψSP (z) and ψP (z) are the (centered) influence functions of β̂n,SP and β̂n,P , respectively. Note

that β̂n,SP is an regular and asymptotically linear (RAL) estimator of β but β̂n,P is an RAL estimator of βP ,17

then by Theorem 4.2 in Tsiatis (2006), we have EPn [ψSP (Zi) ˙̀
βP (Zi)] = 0 and EPn [ψP (Zi) ˙̀

βP (Zi)] = Ik (i.e.,

a k×k identity matrix), further implying that τSP = 0 and τP = d. This, combined with the above argument

for VSP ≥ VP , indicates that the joint asymptotic distribution postulated in Condition 2(i) is in fact a general

result for the semiparametric model and the estimators considered in this paper.

Justification for Condition 2(ii)

Note that the asymptotic properties of the semiparametric estimator β̂n,SP do not depend on whether

‖d‖ <∞ or ‖d‖ =∞, so we still have n1/2(β̂n,SP − βFn)
d.−→ ξF,SP under the same primitive conditions like

those for Condition 2(i).

To study the asymptotic properties of the parametric estimator β̂n,P when ‖d‖ =∞, consider two cases:

(i) δFn = o(1); and (ii) ‖δFn‖ > c for some c > 0. For case (i), let ψF,P (z) denote the (centered) influence

function of β̂n,P under DGP F , which is an Op(1) term, then by the definition of βF,P and δ,

n1/2(β̂n,P − βFn,P ) = n−1/2
n∑
i=1

ψFn,P (Zi) + op(1)

=⇒ n1/2(β̂n,P − βFn) = n1/2δFn +Op(1). (E.2)

Note that the presumption of Condition 2(ii) is that ‖n1/2δFn‖ → ‖d‖ = ∞, then nδ′FnδFn → ∞, which

together with (E.2) implies that ‖n1/2(β̂n,P − βFn)‖ p.−→∞.

For case (ii), note that βF,P is defined in (3.8), then under the same conditions for β̂n,SP = βFn + op(1),

one gets β̂n,P = βFn,P + op(1).18 This, combined with the presumption that ‖δFn‖ = ‖βFn,P − βFn‖ > c,

17Recall that I maintain the assumption that β̂n,SP and β̂n,P are both locally regular estimators, so that their asymptotic
properties hinge on the influence functions.

18This is a familiar result for pseudo-true parameter value (e.g., Newey and McFadden, 1994, Section 2).
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implies that

‖n1/2(β̂n,P − βFn)‖ ≥ |‖n1/2(β̂n,P − βFn,P )‖ − ‖n1/2δFn‖| = ‖n1/2δFn‖ · (1 + op(1))
p.−→∞.
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