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Abstract

In a two step extremum estimation (M estimation) framework with a finite dimen-
sional parameter of interest and a potentially infinite dimensional first step nuisance
parameter, I propose an averaging estimator that combines a semiparametric esti-
mator based on nonparametric first step and a parametric estimator which imposes
parametric restrictions on the first step. The averaging weight is the sample analog of
an infeasible optimal weight that minimizes the asymptotic quadratic risk. I show that
under mild conditions, the asymptotic lower bound of the truncated quadratic risk dif-
ference between the averaging estimator and the semiparametric estimator is strictly
less than zero for a class of data generating processes (DGPs) that includes both cor-
rect specification and varied degrees of misspecification of the parametric restrictions,
and the asymptotic upper bound is weakly less than zero.
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1 Introduction

Semiparametric models, consisting of a parametric component and a nonparametric com-
ponent, have gained popularity in economics. Being approximations of complex economic
activities, they harmoniously deliver two advantages at the same time: parsimonious model-
ing of parameters of interest and robustness against misspecification of arbitrary parametric
restrictions on activities that are not central for the research question at hand. One disad-
vantage of associated semiparametric estimators, however, is that they are in general less
efficient than their parametric counterparts1 which result from imposing certain parametric
restrictions on the nonparametric components of semiparametric models. This efficiency
defect of semiparametric estimators often render relatively imprecise estimates and low test
power, especially when the parametric restrictions are correct or only mildly misspecified.

Recognizing such accuracy defect of semiparametric estimators, researchers have utilized
various specification tests to choose between semiparametric and parametric estimators in
practice. Neither parametric estimators nor the resulting pre-test estimators, however, are
robust to misspecification of the parametric restrictions, since whether they are more accurate
than the semiparametric estimators depends on the unknown degree of misspecification.

In this paper, I aim to solve this tension between robustness and efficiency in semi-
parametric models by developing an estimator whose improvement on the accuracy over
semiparametric estimators (used as benchmark) is robust against varied degrees of misspec-
ification of the parametric restrictions. First, I propose an averaging estimator that is a
simple weighted average between the semiparametric estimator and the parametric estima-
tor with a data-driven weight. Second, I prove that under mild conditions, the proposed
averaging estimator exhibits (weakly) smaller asymptotic quadratic risks – a general class of
measures of accuracy that includes mean squared error (MSE) as a special case – than the
semiparametric benchmark regardless of whether the parametric restrictions are correct or
misspecified, and regardless of the degree of misspecification.

Let β denote the unknown parameter of interest, and let β̂n,SP and β̂n,P denote the
semiparametric and the parametric estimators, respectively. The averaging estimator β̂n,ŵn

takes the form
β̂n,ŵn ≡ (1− ŵn)β̂n,SP + ŵnβ̂n,P , (1.1)

where n is the sample size and ŵn ∈ [0, 1] is a data-driven weight elaborated in equation
(3.8) below. Intuitively, the weight quantifies the asymptotic efficiency gain by imposing
the parametric restrictions and the possible asymptotic misspecification bias by deviating

1In this paper, I will use the terms “parametric estimator” and “parametric restrictions” loosely. They do
not necessarily mean that the data distribution is fully parametric, but only mean that the nonparametric
argument in the estimation objective function belongs to a finite dimensional subspace of certain infinite
dimensional function space, as described in equation (3.5) below.
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from the robust semiparametric benchmark. It then balances the two to reduce asymptotic
quadratic risks compared to the semiparametric estimator.

I employ a uniform asymptotic theory to approximate the upper and the lower bounds
of the finite-sample truncated quadratic risk difference2 between the averaging estimator
and the semiparametric estimator over a large class of DGPs. Extending the subsequence
argument developed in Cheng, Liao, and Shi (2019) for generalized method of moments
(GMM) estimators, I show that the sufficient conditions for the lower bound to be strictly
less than zero and the upper bound to be weakly less than zero is mild. Since the class
I consider includes DGPs under which the parametric restrictions are correctly specified,
mildly misspecified and severely misspecified, my uniform dominance result asserts that the
averaging estimator achieves improvement in accuracy over the semiparametric estimator in
a way that is robust against misspecification. Unlike Cheng, Liao, and Shi (2019) who focus
on one step GMM estimators, I consider two step M estimation framework for semiparametric
models as it encompasses maximum likelihood estimator (MLE), GMM, many kernel-based
and sieve estimators, etc. as special cases, as well as regular one step M estimators.

To demonstrate my averaging estimator, I present two carefully curated examples – a
sample selection example and a quantile treatment effects (QTEs) example. I will introduce
and then revisit both examples multiple times throughout this paper, demonstrating different
aspects of my averaging estimator. A point worth emphasizing here is that even when the
estimation error of the nonparametric component does not affect the asymptotic properties
of the parametric component estimator (e.g., partially linear models in Robinson, 1988), the
presence of the former and how it is modeled generally inflict critical impacts on the latter.
This point will become clearer when I compare the two examples below.

This paper has a few limitations. First, the uniform asymptotic dominance result in
this paper does not guarantee that the averaging estimator outperforms the semiparametric
benchmark in finite samples, even though the uniform asymptotic analysis employed here
provides better approximation of the estimators’ finite sample properties than the usual local
asymptotic framework. Second, inference based on the proposed averaging estimator, like
most cases (if not all) of post-averaging inference, is more challenging than that based on
standard estimators. A two step procedure proposed by Claeskens and Hjort (2008) can be
used to construct the confidence interval (also see, e.g., Kitagawa and Muris, 2016, for its
application), but its coverage probability can be conservative. Third, I focus on averaging
between one semiparametric estimator and one parametric estimator, excluding estimators
that average the semiparametric estimator with more than one parametric estimators and
potentially outperform the one proposed in this paper. These limitations all point out
important directions for future research.

2The loss function and the truncated loss function are defined in equations (3.7) and (4.1), respectively.
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Related Literature. This paper belongs to the growing literature on frequentist shrinkage
and model averaging estimators, which are weighted averages of other estimators.3 Shrink-
age estimators date back to the James-Stein estimator in Gaussian models (James and Stein,
1961; Baranchik, 1964), and are comprehensively reviewed by Fourdrinier, Strawderman, and
Wells (2018). Recent years have seen development of frequentist model averaging estimators
in many contexts. Hjort and Claeskens (2003) and Hansen (2016) consider likelihood-based
estimators in parametric models. In least square regression models, various model averaging
estimator are developed and their properties are carefully examined by Judge and Mittel-
hammer (2004); Mittelhammer and Judge (2005); Hansen (2007); Wan, Zhang, and Zou
(2010); Hansen and Racine (2012); Hansen (2014); Liu (2015) and Hansen (2017), just to
name a few. Lu and Su (2015) study quantile regression models. For semiparametric models,
Judge and Mittelhammer (2007); DiTraglia (2016) consider averaging GMM estimators, and
Kitagawa and Muris (2016) analyze averaging semiparametric estimators of the treatment
effects (ATT) based on different parametric propensity score models. Averaging estimators
in nonparametric models are also considered, for example, by Fan and Ullah (1999); Yang
(2001) and Yang (2003) and surveyed by Wasserman (2006, Chapter 7). Magnus, Powell,
and Prüfer (2010) and Fessler and Kasy (2019), among others, investigate Bayesian model
averaging estimators as well. Claeskens and Hjort (2008) provide an excellent review of both
frequentist and Bayesian model averaging estimators. My paper differs from this literature
in the following ways. First, compared with the papers on parametric and semiparametric
models, I utilize a two step M estimation framework that nests many familiar estimators (one
step or two step) as special cases. Second, in contrast to the literature on nonparametric
models that deals with unknown functions and estimators with various rates of convergence,
my paper focuses on finite dimensional parameters and a knife-edge case in which candidate
estimators have the same rate of convergence. Third, my averaging weight, when specialized
to corresponding cases, differs from those in the aforementioned papers. Fourth, I prove that
my averaging estimator dominates the semiparametric benchmark using a uniform asymp-
totic approach, instead of the local asymptotic approach (Le Cam, 1972; Van der Vaart,
2000, Chapter 7) often taken in the literature. Finally, the sufficient condition for the uni-
form dominance of my averaging estimator, when certain weight matrix is chosen in the
loss function (detailed in Section 4), is stronger than some estimators in the literature and
weaker than others (detailed in Section 4).

This paper is particularly related to Cheng, Liao, and Shi (2019), but it generalizes their
uniform asymptotic approach and the subsequence technique from one step GMM estima-
tors in moment condition models to two step M estimators in more general semiparametric

3Such names as combined or ensemble estimators are also used by different authors to refer to weighted
averages of other estimators with different goals and approaches.
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models.4 Moreover, the restricted estimator considered in Cheng, Liao, and Shi (2019) is
asymptotically efficient, but I allow the restricted (parametric) estimator to be away from
the semiparametric efficiency bound. This relaxation is useful in practice since in complex
semiparametric models, the efficient estimators under the parametric restrictions may be
difficult to implement or may have certain undesirable features, and the widely used ones
may fall short of the efficiency bound (such as Example 1).

The uniform asymptotic analysis in this paper premises upon high-level asymptotic dis-
tributions of β̂n,SP and β̂n,P , which can be justified under various low-level conditions in
different models, as shown in numerous previous studies on the asymptotic properties of
specific and general M estimators – e.g., Lee (1982); Gallant and Nychka (1987); Ahn and
Powell (1993); Newey and Powell (1993); Andrews (1994); Newey (1994); Newey and McFad-
den (1994); Powell (1994); Pakes and Olley (1995); Bickel and Ritov (2003); Powell (2001);
Chen, Linton, and Van Keilegom (2003); Hirano, Imbens, and Ridder (2003); Firpo (2007);
Newey (2009); Ichimura and Lee (2010); Ackerberg, Chen, and Hahn (2012); Ackerberg,
Chen, Hahn, and Liao (2014) and Ichimura and Newey (2017) – and it is just impossible to
enumerate all of them here.

Averaging estimators can be regarded as a smoothed generalization of pre-test estimators
(or model selection estimators), as the latter restrict the averaging weights to be either zero
or one depending on the result of certain specification test or criterion. For models involving
infinite dimensional components, many authors propose various specification tests, including
Bierens (1990), Wooldridge (1992), Hong and White (1995), Bierens and Ploberger (1997),
Stinchcombe and White (1998), Li, Hsiao, and Zinn (2003) and Hart (2013) using sieve
estimators, and Robinson (1989), Fan and Li (1996), Chen and Fan (1999), Lavergne and
Vuong (2000), Aït-Sahalia, Bickel, and Stoker (2001), Horowitz and Spokoiny (2001), Fan,
Zhang, and Zhang (2001) and Fan and Linton (2003) using kernel estimators. FIC-based
model selection estimators in semiparametric models are considered in Hjort and Claeskens
(2006); Claeskens and Carroll (2007); Zhang and Liang (2011); Vansteelandt, Bekaert, and
Claeskens (2012) and DiTraglia (2016). Pre-test estimators typically perform better than the
unrestricted benchmark for certain degrees of misspecification of the restrictions and worse
for the others. Moreover, the literature has documented that in many settings, the maximal
scaled quadratic risks of pre-test estimators based on consistent tests grow unbounded as
sample sizes increase, despite promising properties suggested by pointwise asymptotic anal-
ysis. A well-cited example is the Hodges’ estimator (e.g., Van der Vaart, 2000, Example
8.1), among others (Yang, 2005; Leeb and Pötscher, 2005, 2008; Hansen, 2016; Cheng, Liao,
and Shi, 2019, etc.). In contrast, the uniform asymptotic approach of this paper better

4Cheng, Liao, and Shi (2019) is in turn based on the uniform inference analysis in Andrews, Cheng, and
Guggenberger (2011).
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approximates the finite sample properties of the averaging estimator, so the resulting av-
eraging estimator has (weakly) smaller asymptotic quadratic risks than the semiparametric
benchmark uniformly over the degree of misspecification and avoids the common pitfalls of
pre-test estimators. Another direction is to provide valid inference for pre-test estimators
(e.g., Belloni, Chernozhukov, and Hansen, 2014), but here I focus on developing estimator
with uniform proved risks.

My paper is related to but differs from the following strands of literature as well. First,
doubly robust estimators in statistics (e.g., Scharfstein, Rotnitzky, and Robins, 1999; Robins
and Rotnitzky, 2001; Bang and Robins, 2005; Rubin and van der Laan, 2008; Cao, Tsiatis,
and Davidian, 2009; Tsiatis, Davidian, and Cao, 2011) are robust against misspecification,
but they typically require that some components of the model is correctly specified, while
my averaging estimator exhibits improved risk regardless of the degree of misspecification.
Second, recent development in locally robust estimators in semiparametric models (e.g.,
Chernozhukov, Escanciano, Ichimura, Newey, and Robins, 2018; Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey, and Robins, 2018) removes impacts of the nuisance function
estimation bias (brought by regularization of machine learning methods) on the influence
function of the parameter of interest by orthogonalization (Neyman, 1959). My approach is
still useful in light of their approach since how the nuisance function is modeled affects the
influence function (both variance and bias) even when it is known and needs not estimation.
Third, among the literature on sensitivity analysis (e.g., Rosenbaum and Rubin, 1983a;
Leamer, 1985; Imbens, 2003; Altonji, Elder, and Taber, 2005; Andrews, Gentzkow, and
Shapiro, 2017; Mukhin, 2018; Oster, 2019), Bonhomme and Weidner (2018) and Armstrong
and Kolesár (2021) are the closest to my paper. They take a restricted model as benchmark,
and study the sensitivity of the results with respect to possible local misspecification that
deviates from it. My paper takes an opposite perspective by positing a robust unrestricted
semiparametric model as benchmark and pursuing uniform quadratic risk improvement with
the help of added parametric restrictions. In addition, I focus on point estimation while
both the locally robust and the sensitivity analysis literature studies inference as well.

Plan of the Paper. The rest of this paper is organized as follows. Section 2 introduces
the two examples. Section 3 describes my analysis framework, proposes my averaging weight
and demonstrates using the two examples introduced in Section 2. Section 4 states and
proves the main uniform dominance result of the paper, along with its conditions. Section 5
uses Monte Carlo simulations to investigate the finite sample performance of my averaging
estimator in the two examples introduced in Section 2. Section 6 concludes. Appendix A
provides more details on the two examples. Appendix B gives the proofs.
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2 Examples

I use the following two examples to illustrate the implementation and the properties of my
averaging estimator throughout this paper.

Example 1 - Sample Selection Model. One is interested in estimating β in a partially
linear model

Y1i = X ′
1iβ + s(X2i) + V1i, (2.1)

where E(V1i|X1i, X2i, Y2i = 1) = 0, X1i is a k × 1 vector, X2i is an l × 1 vector, Y2i is an
indicator variable, and X1i and X2i are assumed not to overlap for simplicity. Partially
linear model may arise as a “reduced form” of the common sample selection model, where
s(X2i) is the correction term for the sample selection bias. For example,

Y1i =

{
X ′

1iβ + U1i, if Y2i = 1,

unobserved, if Y2i = 0,
(2.2)

Y2i = I{X ′
2iγ + U2i ≥ 0}, where I{·} is an indicator function. (2.3)

Equation (2.2) is often referred to as outcome equation, and (2.3) as selection equation.
If β in equation (2.1) is identified (see discussion on pages 5-8 of Ahn and Powell, 1993,

and reference therein), then the estimator proposed by Robinson (1988) is one example of the
semiparametric estimator β̂n,SP .5 If one imposes the parametric restriction that (U1i, U2i) are
randomly drawn from a joint normal distribution, then Heckman (1979) shows that s(X2i) is
proportional to the “inverse Mill’s ratio”, and the widely used two step estimator suggested
in his seminal paper could serves as one example of the parametric estimator β̂n,P .6

Example 2 - Quantile Treatment Effects. One is interested in estimating the QTEs at k
different quantiles. Following the convention in the treatment effect literature, let Ti denote
the treatment indicator, Y1,i and Y0,i denote unit i’s potential outcomes with and without
treatment. Let qj,τ ≡ inf{q : P (Yj,i ≤ q) ≥ τ} be the population τ th quantile of the potential
outcome Yj,i (j = 0, 1), and let ∆τ ≡ q1,τ − q0,τ denote the QTE at τ . In this example,
β ≡ (∆τ1 , . . . ,∆τk)

′, where τι ∈ (0, 1) for ι = 1, . . . , k. Firpo (2007) shows the identification
of qj,τ under the standard strong ignorability conditions (Rosenbaum and Rubin, 1983b). In

5Many semiparametric estimators of β in sample selection models (with potentially nonparametric se-
lection equation) have been proposed and examined under various identification conditions, for example,
Lee (1982); Gallant and Nychka (1987); Newey, Powell, and Walker (1990); Ahn and Powell (1993); Newey
(2009), among many others. They could all serve as the β̂n,SP in this paper, provided that Conditions in
Section 4 are satisfied.

6Maximum likelihood estimator could also be applied under the joint normality restriction, and relative
advantages of MLE and Heckman (1979) two step estimators are well studied (e.g., Wales and Woodland,
1980; Nelson, 1984).
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terms of estimation, q̂j,τ solves the minimization problem (given j and τ):

q̂n,j,τ ≡ argmin
q
n−1

n∑
i=1

ω̂n,j,i · ρ(Yi − q), (2.4)

where ρτ (a) ≡ a ·(τ−I{a ≤ 0}) is the check function often used for quantile regressions (e.g.,
Koenker and Bassett Jr, 1978), and the weights are functions of the estimated propensity
score p̂n(x) as follows

ω̂n,1,i ≡
Ti

p̂n(Xi)
, and ω̂n,0,i ≡

1− Ti
1− p̂n(Xi)

. (2.5)

Depending on whether the propensity score function p(x) is estimated parametrically (e.g.,
probit) or nonparametrically (e.g., series logit in Firpo, 2007), one would obtain a parametric
estimator β̂n,P or a semiparametric estimator β̂n,SP of the QTEs.

The semiparametric models considered in this paper is flexible enough to include many
other examples – control function approach to endogenous regressors (Blundell and Pow-
ell, 2004), single-index models (Ahn, Ichimura, and Powell, 1996), dynamic games (Bajari,
Chernozhukov, Hong, and Nekipelov, 2015) and dynamic discrete choice models (Hotz and
Miller, 1993; Buchholz, Shum, and Xu, 2020; Keane and Wolpin, 1997), etc.

I put Examples 1 and 2 in the spotlight here because they highlight a few distinct fea-
tures of my averaging estimator. First, unlike in Cheng, Liao, and Shi (2019), the restricted
estimator β̂n,P in this paper need not to be asymptotically efficient under the parametric re-
strictions, which is illustrated by Heckman (1979) two step estimator in Example 1.7 Second,
the asymptotic distribution of a two step M estimator generally depends on the presence of
the first step nuisance parameter and how it is modeled (e.g., parametrically or nonparamet-
rically) – this is the case in both Examples 1 and 2 – even though it might be invariant to the
estimation error of the first step nuisance parameter like in Example 1. Third, in the partic-
ular Monte Carlo experiments in Section 5, the relative efficiency gain of β̂n,P compared to
β̂n,SP outweighs its misspecification bias in Example 1, where the averaging weight is strictly
between 0 and 1 and the averaging estimator β̂n,ŵ strictly dominates β̂n,SP ; opposite is the
case in Example 2, where the averaging weight is close to 0 and the averaging estimator
exhibit the same asymptotic properties as β̂n,SP (i.e., only weakly dominates β̂n,SP ).

7In contrast, the less frequently used MLE is an asymptotically efficient parametric estimator. Further
discussion on the two estimators is in Appendix A.
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3 Framework of Analysis and Averaging Weight

In this section, I describe the general framework of my analysis, prescribe the averaging
weight, and explain its intuition. How to obtain the averaging weight in a particular semi-
parametric model is then demonstrated using Examples 1 and 2.

General Framework. I am interested in the estimation of a finite dimensional vector of
parameters β ∈ B, where B ⊂ Rk is compact. Let F denote the set of DGPs, and let F
denote one DGP from F . Suppose βF , the true parameter value under DGP F , is identified
as the unique minimizer of some objective function QF (β, hF ); that is,

βF ≡ argmin
β∈B

QF (β, hF ), (3.1)

where the objective function QF (β, h) depends on some potentially infinite dimensional nui-
sance parameter h. Since the objective function QF has h as an argument, the presence of h
and how it is modeled generally affect the asymptotic properties of β estimators through QF ,
even in the absence of estimation error of h.8 Under DGP F , the true nuisance parameter
value hF is identified as the unique maximizer of another objective function RF (h); that is,

hF ≡ argmin
h∈H

RF (h), (3.2)

where (H, ‖ · ‖H) is some complete, separable space of square integrable functions of data Z.
A general class of two step M estimators β̂n is as follows,

β̂n ≡ argmin
β∈B

Q̂n(β, ĥn), (3.3)

where Q̂n(β, ĥn) is some empirical objective function of β which depends on the sample
{Zi}ni=1 and ĥn, a first step estimator of the unknown nuisance parameter h. Throughout
this paper, I suppress the dependence of the empirical objective functions on the sample
{Zi}ni=1 for notational simplicity.

Depending on how h is estimated in the first step, I may end up with different estimators
of β. If I do not impose specific functional form restrictions on h, then ĥn can be obtained
using common nonparametric estimation procedures. For instance, ĥn may result from a
first step sieve M estimation procedure as follows,

ĥn ≡ arg min
h∈Hn

R̂n(h), (3.4)

8Typically, the influence function of the estimator β̂n depends on the first and second derivatives of QF ,
which generally in turn both depend on h (see, e.g. Newey, 1994; Ichimura and Lee, 2010; Ackerberg, Chen,
Hahn, and Liao, 2014; Ichimura and Newey, 2017).
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where R̂n(h) is some objective function, and Hn are subspaces of (H, ‖ · ‖H) that become
dense as n → ∞. The semiparametric estimator β̂n,SP thus results from a two step M
estimation procedure with the first step being (3.4) and the second step being (3.3).

On the other hand, economic hypotheses may suggest certain parametric form of h, or
one may want to limit the dimension of h to improve the efficiency. Whatever the motive
might be, one can model h with a finite dimensional subspace of (H, ‖ · ‖H), denoted as Hg,
with a function g that is known up to a finite dimensional vector of unknown parameters
γ. Formally, let Γ ⊂ Rt be a compact subset of the t-dimensional Euclidean space, and let
γ ∈ Γ, then

Hg ≡ {h(·) : ∃ some γ ∈ Γ such that h(·) ≡ gγ(·) = g(·; γ)}. (3.5)

Let
γ̂n ≡ argmin

γ∈Γ
R̂n(gγ), (3.6)

and let the restricted nuisance parameter estimate be written as ĥn ≡ gγ̂n , then the paramet-
ric estimator β̂n,P results from a two step M estimation procedure with the first step being
(3.6) and the second step being (3.3).

Heuristics and Averaging Weight. For any estimator β̂n of β, I consider a quadratic loss
function.9 For a chosen positive semi-definite weight matrix Υ, I define the loss function to
be

ℓ(β̂n, β) ≡ n(β̂n − β)′Υ(β̂n − β). (3.7)

Here the weight matrix Υ is chosen by the researcher and reflects how much the researcher
values the estimation accuracy of each coordinate of β. If the researcher treats every coordi-
nate equally, then she may choose Υ = Ik (the k×k identity matrix). If the researcher focuses
on the prediction error in the sample selection model, then she may choose Υ = EF (X1iX

′
1i),

where EF (·) denotes the expectation operator under DGP F . If the researcher focuses on
only a subvector of β, then she may choose Υ to be a diagonal matrix with diagonal entries
associated with the subvector being one and other diagonal entries being zero. This last ex-
ample shares the same spirit with the focused information criterion (FIC) model averaging
(Zhang and Liang, 2011), but the weight matrix Υ here affords more flexibility. Note that
both the loss function and the averaging weight (to be introduced later) depend on Υ, but
I suppress such dependence for notational simplicity.

Given the loss function in equation (3.7), the semiparametric estimator β̂n,SP is preferred
9Hansen (2016) argues that the choice of loss function affects asymptotic performance of estimators only

via its local quadratic approximation, so considering a quadratic loss function is not as restrictive as it may
appear. To be precise, the loss function used in the asymptotic theory of this paper is a truncated version
to be defined in equation (4.1).
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in terms of robustness since it is consistent whether the parametric restrictions hold or not.
The parametric estimator β̂n,P is consistent only if those restrictions are sufficiently close
to holding, and if they do, β̂n,P will be more efficient than β̂n,SP since the parametric first
step gγ̂n are generally more efficient than the nonparametric first step ĥn. As a result,
the potentially more efficient β̂n,P sometimes has improved risk over the robust β̂n,SP but
sometimes does not. The optimal robustness-efficiency trade-off (i.e. bias-variance trade-off)
depends on the degree of misspecification of the parametric restrictions, a measure unknown
to the researcher.

The main message of this paper, therefore, is that with the averaging weight I propose,
the averaging estimator of the form in equation (1.1) always has no larger risk than the robust
estimator β̂n,SP regardless of whether the parametric restrictions hold or not. I prescribe the
averaging weight and explain the heuristics in this section, and rigorous conditions and the
formal uniform dominance result will be provided in Section 4.

Under DGP F , let VF,SP and VF,P be the asymptotic variance-covariance matrices of
β̂n,SP and β̂n,P , respectively, and let covF be their asymptotic covariance matrix. Let V̂n,SP ,
V̂n,P and ĉovn be their consistent estimators. Then the data-driven averaging weight is

ŵn ≡ tr[Υ(V̂n,SP − ĉovn)]

tr[Υ(V̂n,SP + V̂n,P − 2ĉovn)] + n(β̂n,P − β̂n,SP )′Υ(β̂n,P − β̂n,SP )
, (3.8)

where tr(·) indicates the trace of a square matrix.
If β̂n,P is an asymptotically efficient estimator under the parametric restrictions, then

covF = VF,P . In this case, the averaging weight can simplify to

ŵn ≡ tr[Υ(V̂n,SP − V̂n,P )]

tr[Υ(V̂n,SP − V̂n,P )] + n(β̂n,P − β̂n,SP )′Υ(β̂n,P − β̂n,SP )
, (3.9)

which resembles the GMM averaging weight proposed by Cheng, Liao, and Shi (2019). It is
easier to see the intuition of the averaging weight from equation (3.9). If the efficiency gain
of imposing the first step parametric restrictions, represented by tr[Υ(V̂F,SP − V̂F,P )], is large,
then the averaging estimator ought to allocate more weight to β̂n,P . If, on the other hand,
the bias of β̂n,P resulting from misspecification of the restrictions, represented by β̂n,P −β̂n,SP
(since β̂n,SP is always consistent), is large, then the averaging estimator should assign less
weight to β̂n,P . The proposed weight in (3.9) operationalizes such intuition by striking a
balance between robustness and efficiency in a GMM setting.

The weight in equation (3.8) generalizes (3.9) by allowing averaging even when β̂n,P is
not asymptotically efficient. This generalization is especially important for semiparametric
models, because asymptotically efficient estimators do not always exist in these models, and
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might be difficult to compute or possess undesirable finite sample properties when they do.
A salient example is the sample selection model under the joint normality restriction, where
Heckman (1979) two step estimator is asymptotically inefficient but more widely used than
the efficient MLE, for a variety of reasons (see, e.g., the discussion in Heckman, 1976; Wales
and Woodland, 1980; Nelson, 1984).

In the rest of this section, I will use Examples 1 and 2 to demonstrate the construction
of the averaging weight ŵn. Here I will assume that β̂n,SP and β̂n,P are both asymptotically
linear estimators (equation (2.1) of Ichimura and Newey, 2017). Asymptotic linearity is not
needed for the main dominance result in this paper,10 but if it holds, then the consistent
estimators V̂n,SP , V̂n,P and ĉovn in equation (3.8) can be readily obtained based on the
influence functions of β̂n,SP and β̂n,P . Let ψF,SP (z) denote the non-centered influence function
of β̂n,SP , let ψF,P (z) denote that of β̂n,P , and let ψn,SP and ψn,P denote their sample analogs,
respectively.11 Then

V̂n,SP =
1

n

n∑
i=1

ψn,SP (Zi)ψ
′
n,SP (Zi)−

[
1

n

n∑
i=1

ψn,SP (Zi)

]
·

[
1

n

n∑
i=1

ψn,SP (Zi)

]′

, (3.10)

V̂n,P =
1

n

n∑
i=1

ψn,P (Zi)ψ
′
n,P (Zi)−

[
1

n

n∑
i=1

ψn,P (Zi)

]
·

[
1

n

n∑
i=1

ψn,P (Zi)

]′

, (3.11)

ĉovn =
1

n

n∑
i=1

ψn,SP (Zi)ψ
′
n,P (Zi)−

[
1

n

n∑
i=1

ψn,SP (Zi)

]
·

[
1

n

n∑
i=1

ψn,P (Zi)

]′

. (3.12)

It is worth emphasizing that the influence functions need to be valid under potential
misspecification (e.g., Ichimura and Lee, 2010), such that the estimators V̂n,SP , V̂n,P and ĉovn
are consistent regardless of whether the parametric restrictions hold or not. In other words,
they have to be robust against misspecification of the parametric restrictions; otherwise the
resulting averaging estimator might not uniformly dominate the semiparametric benchmark.
In particular, the influence functions ψF,SP (z) and ψF,P (z) depend on the unknown DGP F ,
and such dependence is often manifested in the fact that ψF,SP (z) and ψF,P (z) involve the
unknown parameter βF itself (or other functionals of the DGP F ). Whenever βF appears in
the influence functions, the robust estimator β̂n,SP (or robust estimators of the functionals)
needs to be used.

Example 1 (cont’d) - Sample Selection Model. Let hF = (h1F , h
′
2F )

′ be a function from
Rl to Rk+1, with h1F (x2) ≡ EF (Y1|X2 = x2) and h2F (x2) ≡ EF (X1|X2 = x2). Let ĥn denote

10Nearly all root-n consistent semiparametric estimators are asymptotically linear under sufficient regu-
larity conditions (Bickel, Klaassen, Bickel, Ritov, Klaassen, Wellner, and Ritov, 1993; Ichimura and Newey,
2017). See the discussion after Condition 2 for more details.

11This facilitates the demonstration by giving the readers some concrete objects to look at.
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the Nadaraya-Watson estimator of hF . Let λ̂i ≡ λ(−X ′
2iγ̂n) be the estimated inverse Mill’s

ratio with γ̂n being the first step probit estimate associated with β̂n,P , and let Pλ̂(Y1i) and
Pλ̂(X1i) denote the fitted values after regressing Y1i and X1i respectively on λ̂i. Since h does
not depend on β, I use Theorem 3.3 of Ichimura and Lee (2010) to derive the non-centered
influence functions of β̂n,SP and β̂n,P under potential misspecification (detailed in Appendix
A) and immediately get their sample analogs:

ψn,SP (Zi) = −

{
1

n1

n1∑
i=1

[
X1i − ĥ2,n(X2i)

] [
X1i − ĥ2,n(X2i)

]′}−1

· {Y1i − ĥ1,n(X2i)− [X1i − ĥ2,n(X2i)]
′β̂n,SP} · [X1i − ĥ2,n(X2i)], (3.13)

ψn,P (Zi) = −

{
1

n1

n1∑
i=1

[X1i − Pλ̂(X1i)] [X1i − Pλ̂(X1i)]
′

}−1

· {Y1i − Pλ̂(Y1i)− [X1i − Pλ̂(X1i)]
′β̂n,SP} · (X1i − Pλ̂(X1i)), (3.14)

where n1 is the size of the subsample whose Y1i is observed and n is the total sample size.
As a result, the averaging weight can be constructed by first plugging equations (3.13) and
(3.14) into equations (3.10), (3.11) and (3.12), and then plugging the latter into equation
(3.8), with the coefficient n of the second term of the denominator in equation (3.8) replaced
by n1.

Two point are worth emphasizing here. First, β naturally arises in the non-centered
influence functions (see details in Appendix A) and is invariant to how the conditional mean
function h is modeled. As a result, when computing the sample analogs of the non-centered
influence functions using equations (3.13) and (3.14), β should be replaced by β̂n,SP , the
estimator that is consistent regardless of whether the joint normality restriction is correctly
specified or not. Second, the nuisance function h directly enters the influence function of
β̂n. As a result, how h is modeled (by nonparametric hF (x2) or by projection PλF

on the
inverse Mill’s ratio) affects the functional form of the influence function, even though neither
equation (3.13) nor equation (3.14) contains a correction term for the first step estimation
error of h.

Example 2 (cont’d) - (Quantile Treatment Effects). Let p̂n,SP (x) denote the series
logit estimator of the propensity score function p(x) proposed by Firpo (2007), and let Φ(x′γ̂n)
denote the linear probit estimator of p(x), with γ̂n being the probit coefficient estimate. Note
that β̂n,SP = q̂1,n,SP−q̂0,n,SP and β̂n,P = q̂1,n,P−q̂0,n,P , where q̂j,n,SP = (q̂j,τ1,n,SP , . . . , q̂j,τk,n,SP )

′

and q̂j,P = (q̂j,τ1,n,P , . . . , q̂j,τk,n,P )
′. Here q̂j,τ,n,SP denotes the semiparametric estimator of the

τ th quantile of Yj,i (j = 0, 1), obtained by solving equation (2.4) with p̂n(Xi) in equation
(2.5) replaced by p̂n,SP (Xi); and q̂j,τ,n,P denotes the corresponding parametric estimator by
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replacing p̂n(Xi) in equation (2.5) with Φ(X ′
iγ̂n).12 I follow the argument in the proof of

Theorem 1 in Firpo (2007, Appendix 3) to derive the influence functions of β̂n,SP and β̂n,P

(detailed in Appendix A) and immediately get their sample analogs for any τ ∈ (0, 1):

π̂j,τ,n,SP (y) ≡ −I{y ≤ q̂j,τ,n,SP} − τ

f̂j,n,SP (q̂j,τ,n,SP )
, j = 0, 1,

φ̂τ,n,SP (Zi) ≡
Ti

p̂n,SP (Xi)
· π̂1,τ,n,SP (Yi)−

1− Ti
1− p̂n,SP (Xi)

· π̂0,τ,n,SP (Yi),

α̂τ,n,SP (Zi) ≡ −Ên,SP

[
T · π̂1,τ,SP (Y )

[p̂n,SP (X)]2
+

(1− T ) · π̂0,τ,SP (Y )

[1− p̂n,SP (X)]2

∣∣∣∣X = Xi

]
· (Ti − p̂n,SP (Xi)) ,

ψ̂τ,n,SP (Zi) ≡ φ̂τ,n,SP (Zi) + α̂τ,n,SP (Zi); (3.15)

and

π̂j,τ,n,P (y) ≡ −I{y ≤ q̂j,τ,n,P} − τ

f̂j,n,SP (q̂j,τ,n,P )
, j = 0, 1,

φ̂τ,n,P (Zi) ≡
Ti

Φ(X ′
iγ̂n)

· π̂1,τ,n,P (Yi)−
1− Ti

1− Φ(X ′
iγ̂n)

· π̂0,τ,n,P (Yi),

α̂τ,n,P (Zi) ≡ −Ê
[
Ti · π̂1,τ,n,P (Y )

[Φ(X ′
iγ̂n)]

2
+

(1− Ti) · π̂0,τ,n,P (Y )

[1− Φ(X ′
iγ̂n)]

2

∣∣∣∣X = Xi

]
· (Ti − Φ(X ′

iγ̂n)),

ψ̂τ,n,P (Zi) ≡ φ̂τ,n,P (Zi) + α̂τ,n,P (Zi), (3.16)

where f̂j,n,SP (·) is a nonparametric estimator of the probablity density function of the potential
outcome Yj (j = 0, 1) and Ên,SP (·) is a nonparametric estimator of the conditional mean
function, both are described in details in Appendix 3 of Firpo (2007). Let ψ̂n,SP (Zi) ≡(
ψ̂τ1,n,SP (Zi), . . . , ψ̂τk,n,SP (Zi)

)′
and ψ̂n,P (Zi) ≡

(
ψ̂τ1,n,P (Zi), . . . , ψ̂τk,n,P (Zi)

)′
. As a result,

the averaging weight can be constructed by first plugging ψ̂n,SP (Zi) and ψ̂n,P (Zi) into equations
(3.10), (3.11) and (3.12), and then plugging the latter into equation (3.8).

Similar to Example 1, it is worth emphasizing that in both sample analogs, f̂j,n,SP (·) and
Ê(·) are both nonparametric estimators, since fj(·) and E(·) naturally arise in the influence
functions from approximating the optimization problem in equation (2.4) by a quadratic
optimization problem with coefficients involving the true probability density function under
DGP F (equation (A.1) and (A.2) in Appendix A), and therefore are invariant to how the
propensity score function p(·) is modeled.

In contrast to Example 1, both influence functions in equations (3.15) and (3.16) contain
a correction term (i.e., α̂τ,n,SP (Zi) and α̂τ,n,P (Zi)) for the first step estimation error of h, in
addition to the terms (i.e., φ̂τ,n,SP (Zi) and φ̂τ,n,P (Zi)) as if the propensity score function was

12The details of the procedure for obtaining β̂n,SP and β̂n,P are elaborated in Appendix A.

14



known. The functional form of all of them depends on how the propensity score function is
modeled (by nonparametric pF (x) or by Φ(x′γF ), the probit probability).

4 Main Result

In this section, I prove and provide the conditions for the uniform dominance result of the av-
eraging estimator. That is, in the two step M estimation framework, the averaging estimator
β̂n,ŵ proposed in equation (1.1) with the weight given in equation (3.8) has (weakly) smaller
asymptotic quadratic risk than the robust semiparametric estimator β̂n,SP under DGPs in
F , which encompasses a wide range of DGPs under which the parametric restrictions might
be correctly specified or misspecified.

The key is to determine the sign of the asymptotic risk difference between the averaging
estimator β̂n,ŵn and the semiparametric estimator β̂n,SP under DGPs with varied degrees of
misspecification. I utilize the uniform asymptotic approach and the subsequence technique
in Cheng, Liao, and Shi (2019), instead of Pitman sequences, which is frequently used when
analyzing the local asymptotic properties of estimators. Lower (infimum) and upper (supre-
mum) bounds of the risk differences between β̂n,ŵ and β̂n,SP for all DGPs within a set F
satisfying certain regularity conditions are considered before rendering the sample size to
infinity.

To formally state the dominance result, some notation is needed. For any estimator β̂n
of β and an arbitrary real number ζ, define the truncated loss function

ℓζ(β̂n, β) ≡ min{ℓ(β̂n, β), ζ}, (4.1)

where ℓ(β̂n, β) is the quadratic loss function defined in equation (3.7). This truncated loss
function is defined to facilitate my asymptotic analysis later, and the truncation does not
restrict the applicability of the main result much since ζ could be arbitrarily large. The
bounds of the truncated risk differences for finite sample size n are defined as:

RDn(β̂n,ŵn , β̂n,SP ; ζ) ≡ inf
F∈F

EF [ℓζ(β̂n,ŵn , βF )− ℓζ(β̂n,SP , βF )],

RDn(β̂n,ŵn , β̂n,SP ; ζ) ≡ sup
F∈F

EF [ℓζ(β̂n,ŵn , βF )− ℓζ(β̂n,SP , βF )].

Then I define the following limits of the finite sample bounds:

AsyRD(β̂n,ŵn , β̂n,SP ) ≡ lim
ζ→∞

lim inf
n→∞

RDn(β̂n,ŵn , β̂n,SP ; ζ), (4.2)

AsyRD(β̂n,ŵn , β̂n,SP ) ≡ lim
ζ→∞

lim sup
n→∞

RDn(β̂n,ŵn , β̂n,SP ; ζ). (4.3)
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Note that first the extrema of the risk differences over the entire DGP set F are taken,
then the sample size is sent to infinity. The averaging estimator is said to dominate the
semiparametric estimator in terms of asymptotic truncated risk uniformly over F if

AsyRD(β̂n,ŵn , β̂n,SP ) < 0, (4.4)

and
AsyRD(β̂n,ŵn , β̂n,SP ) ≤ 0. (4.5)

For every DGP F ∈ F and under the parametric restrictions, define the first step pseudo-
true parameter vector as

γF ≡ argmin
γ∈Γ

RF (gγ), (4.6)

where the first step objective function RF (·) is the same as in equation (3.2) and the first
step nuisance function subspace Hg is defined in equation (3.5). Also define the second step
pseudo-true parameter as

βF,P ≡ argmin
β∈B

QF (β, gγF ), (4.7)

where QF (·, ·) is the same as in equation (3.1). In general, the nuisance function gγF induced
by the pseudo-true parameter γF is different from the true nuisance function hF identified
in (3.2). In consequence, βF,P in general will be different from βF , the true parameter of
interest identified in (3.1).

Define δF ≡ βF,P − βF , which represents the bias caused by imposing the parametric
restrictions.

Condition 1. Suppose F is such that the following holds.
(i) inf{F∈F : ∥gγF −hF ∥H>0}

∥δF ∥
∥gγF −hF ∥H

> 0;
(ii) 0k×1 ∈ int(∆δ), where ∆δ ≡ {δF : F ∈ F}.

Condition 1(i) is a simple requirement that if the parametric restrictions on the nuisance
function h is misspecified, then the pseudo-true parameter value βF,P will differ from the
true value βF , which rules out the uninteresting special case that βF may be consistently
estimable even with severely misspecified parametric restrictions. As a result, the degree
of misspecification can be indexed by δF , the bias introduced by imposing the parametric
restrictions. Condition 1(ii) says that the parametric restrictions may be misspecified of
varied degrees, including the correct specification case. Condition 1 does not impose any
stringent restrictions on the models that I analyze.

Recall that VF,SP and VF,P are the asymptotic variance-covariance matrices of β̂n,SP and
β̂n,P under DGP F , respectively, and covF is their asymptotic covariance matrix. I use S(F )
to denote the nuisance parameter vector that characterizes the joint asymptotic distributions
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of β̂n,SP and β̂n,P under DGP F ; that is,

S(F ) ≡ [δ′F , vech(VF,SP )′, vech(VF,P )′, vec(covF )′]′.

Let S̄(F ) denote the subvector of S(F ) excluding δF and define

S ≡ {S(F ): F ∈ F}. (4.8)

Condition 2. For a sequence of DGPs {Fn}∞n=1 such that S(Fn) → S(F ) for some F ∈ F and
n1/2δFn → d ∈ Rk

∞, suppose the estimators β̂n,SP and β̂n,P satisfy the following conditions.13

(i) If ‖d‖ <∞, then [
n1/2(β̂n,SP − βFn)

n1/2(β̂n,P − βFn)

]
d.−→

[
ξF,SP

ξF,P + d

]
. (4.9)

If I define ξ̃F ≡ (ξ′F,SP , ξ
′
F,P )

′ and

ṼF ≡

[
VF,SP covF

covF VF,P

]
,

then ξ̃F ∼ N (02k×1, ṼF ), with VF,SP ≥ VF,P .
(ii) If ‖d‖ = ∞, then n1/2(β̂n,SP − βFn)

d.−→ ξF,SP and ‖n1/2(β̂n,P − βFn)‖
p.−→ ∞.

Condition 2(i) requires that both β̂n,SP and β̂n,P are locally regular estimators (Ichimura
and Newey, 2017, Definition 1), which means that n1/2((β̂′

n,SP , β̂
′
n,P )

′ − (β′
Fn
, β′

Fn,P
)′) has the

same limiting distribution under a sequence of alternatives as it does when Fn = F for all
n. Like in Ichimura and Newey (2017, Section 3), this condition is a mild one and it allows
me to bypass primitive conditions of asymptotic linearity (e.g., Ritov and Bickel, 1990) and
to focus on the main dominance result of this paper. Note that in equation (4.9), β̂n,P is
re-centered using δFn and the presumption that n1/2δFn → d. Moreover, VF,SP ≥ VF,P states
the intuition that imposing parametric restrictions generally lead to (weak) efficiency gain.14

This intuitive condition can be justified by the Le Cam’s Third Lemma (e.g., Van der Vaart,
2000, Example 6.7) and the definition of semiparametric information bound (see Bickel,
Klaassen, Bickel, Ritov, Klaassen, Wellner, and Ritov, 1993, Chapter 3) as follows. First,
when ‖d‖ = 0, the parametric restrictions are correctly specified, due to Condition 1(ii).
As a result, the restricted nuisance function space Hg is a subspace of H that contains the
true nuisance function hF . Using an argument similar to that in the proof of Lemma 1 in

13Note that Pitman sequences are an example of such sequences.
14For the two examples, this can also be seen from the influence functions given in Appendix A.
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Ackerberg, Chen, Hahn, and Liao (2014), one can show that the semiparametric efficiency
bound of the restricted model (with nuisance function space Hg) is smaller than that of
the unrestricted model (with nuisance function space H),15 because the latter is the supre-
mum of all parametric submodels that include the former. So it is natural to require that
VF,SP ≥ VF,P .16 Second, when ‖d‖ < ∞ but ‖d‖ 6= 0, the asymptotic variance-covariance
matrix of β̂n,P remains VF,P by the local regularity and the Le Cam’s Third Lemma. In
addition, the asymptotic variance-covariance matrix of β̂n,SP remains VF,SP regardless of the
parametric restrictions. Therefore, VF,SP ≥ VF,P follows. Condition 2(ii) is also intuitive
since it states that when the parametric restrictions are severely misspecified, β̂n,P will have
an infinitely large asymptotic bias. Formal justification of Condition 2(ii) is in Appendix B.
Condition 2 is a high-level condition that might be ensured by different primitive conditions
in specific semiparametric models, on which there have been many important contributions
(e.g., Robinson, 1988; Klein and Spady, 1993; Hirano, Imbens, and Ridder, 2003, are perti-
nent to Examples 1 and 2).17 I bypass those conditions and focus on the common asymptotic
properties in preparation for the discussion of the averaging estimator. Also note that Con-
dition 2 takes the consistency of β̂n,SP and β̂n,P for respective (pseudo-)true values defined
in equations (3.1) and (4.7) as presumption, for which the primitive conditions have been
studied extensively (e.g., Newey and McFadden, 1994, Section 2).

Note that the nuisance parameter S(F ) determines the asymptotic properties of ŵn and
β̂n,ŵn through those of β̂n,SP and β̂n,P . Given the high-level Condition 2, the following lemma
follows immediately.

Lemma 1. Suppose Conditions 1 and 2 hold and let AF ≡ Υ(VF,SP − covF ) and BF ≡
Υ(VF,SP + VF,P − 2covF ). Suppose that V̂n,SP , V̂n,P and ĉovn have finite probability limits.

(i) If ‖d‖ <∞, note that V̂n,SP , V̂n,P and ĉovn are consistent estimators of corresponding
15That is, the difference between the two is a negative semi-definite matrix.
16Following Ackerberg, Chen, Hahn, and Liao (2014) approach, one needs to define another nuisance

parameter η, which captures the features of the distribution of data Z other than those determined by β and
h, then characterize the tangent space (see Newey, 1990; Bickel, Klaassen, Bickel, Ritov, Klaassen, Wellner,
and Ritov, 1993) for both the unrestricted and the restricted models. The efficient score function of β in
each model is therefore the projection residual of the score function of β onto its own tangent space. Since
the unrestricted models include the restricted models as a subspace, the tangent space of the former includes
that of the latter as a subspace as well. This implies that the efficient score function of β in the former
has smaller norm than that in the latter. This in turn implies that the semiparametric efficiency bound
of the former, which is the inverse of the squared norm of the efficient score function, is larger than that
of the latter. Strictly speaking, it is still possible that the two step parametric estimator is asymptotically
less efficient than the semiparametric estimator despite the opposite relative magnitude of their efficiency
bounds, but since Crepon, Kramarz, and Trognon (1997) and Newey and Powell (1999) show in different
models that the two step estimators achieve the efficiency bounds if the first step is exactly identified, the
high-level condition VF,SP ≥ VF,P in Condition 2(i) does not go without justification.

17In Cheng, Liao, and Shi (2019), additional structure brought by the GMM facilitates discussion on
low-level conditions.
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elements in S̄(F ), then

ŵn
d.−→ wF ≡ tr(AF )

tr(BF ) + (ξF,P + d− ξF,SP )′Υ(ξF,P + d− ξF,SP )
, (4.10)

which in turn implies that

n1/2(β̂n,ŵn − βF )
d.−→ ξ̄F,d ≡ (1− wF )ξF,SP + wF (ξF,P + d); (4.11)

(ii) if ‖d‖ = ∞, then ŵn
p.−→ 0 and n1/2(β̂n,ŵn − βF )

d.−→ ξF,SP .

Condition 3. Suppose F is such that the following holds.
(i) S is compact;
(ii) for any F ∈ F with δF = 0, there exists a constant ϵF > 0 such that for any δ̃ ∈ Rk

with 0 ≤ ‖δ̃‖ < ϵF , there is F̃ ∈ F with δF̃ = δ̃ and ‖S̄(F̃ ) − S̄(F )‖ ≤ C‖δ̃‖κ for some
C, κ > 0.

Condition 3(i) is necessary for applying the subsequence argument to show the uniform
dominance result. Since S is a set of finite dimensional vectors, Condition 3(i) essentially
requires S to be bounded and closed. vech(VF,SP ) and vech(VF,P ) being bounded implies that
both β̂n,SP and β̂n,P are regular estimators, which is satisfied in most cases I am interested
in (e.g., Examples 1 and 2). S being closed is not restrictive in the sense that if S is not
closed, then I can define it to be the closure of S and the main uniform dominance result still
holds. Condition 3(ii) says that for any F ∈ F satisfying the parametric restrictions, there
are many DGPs F̃ ∈ F that are close to F , where the closeness of two DGPs is measured
by the distance between S̄(F̃ ) and S̄(F ). This condition will be used in the subsequence
argument to show the uniform dominance and is not restrictive, since it means that the DGP
set F is rich enough, which makes the uniform dominance result harder to hold.

Now I explain the rationale behind the averaging weight ŵn in equation (3.8). By Con-
dition 2(i), for any fixed weight w, the asymptotic distribution of β̂n,w when ‖d‖ < ∞ is
obtained by the continuous mapping theorem:

n1/2(β̂n,w − βF )
d.−→ ξF,w ≡ (1− w)ξF,SP + w(ξF,P + d). (4.12)

Since the asymptotic risk, defined in equation (3.7), is quadratic in w, the optimal weight
w∗ that minimizes the asymptotic risk under DGP F is

w∗ =
tr[Υ(VF,SP − covF )]

tr[Υ(VF,SP + VF,P − 2covF )] + d′Υd
.

If β̂n,P is asymptotically efficient under the parametric restrictions, then covF = VF,P and
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the optimal weight simplifies to

w∗ =
tr[Υ(VF,SP − VF,P )]

tr[Υ(VF,SP − VF,P )] + d′Υd
.

This optimal weight balances the efficiency gain and the bias induced by the first step
parametric restrictions. Higher efficiency gain tr[Υ(VF,SP − VF,P )], relative to the squared
bias d′Υd, demands larger weight w∗ to be assigned to β̂n,P , and vice versa.

Although the optimal weight w∗ is infeasible due to unknown VF,SP , VF,P , covF and d,
equation (3.8) constructs a feasible averaging weight by replacing the unknown components
with their estimators. In equation (3.8), V̂n,SP , V̂n,P and ĉovn are consistent estimators of
VF,SP , VF,P and covF , respectively. At the same time, Condition 2(i) implies that n1/2(β̂n,P −
β̂n,SP ) is an asymptotically unbiased estimator of d when ‖d‖ <∞, so d′Υd in w∗ is further
replaced by n

(
β̂n,P − β̂n,SP

)′
Υ
(
β̂n,P − β̂n,SP

)
in order to get equation (3.8).

When ‖d‖ = ∞, the parametric estimator β̂n,P is severely biased so that a sensible aver-
aging estimator ought to allocate zero weight to β̂n,P . This intuition is echoed by Condition
2(ii) and Lemma 1(ii), which imply that the feasible averaging weight given in equation (3.8)
approaches to zero, as long as the probability limits of V̂n,SP , V̂n,P and ĉovn are finite.

It is worth pointing out that because n1/2(β̂n,P − β̂n,SP ) is only asymptotically unbiased
for d but not consistent,18 and wF in Lemma 1(i) is a random variable and in general not
unbiased for w∗ due to the Jensen’s inequality, so ŵn is not a consistent estimator for the
infeasible optimal weight w∗. Proving the uniform dominance of the averaging estimator,
therefore, is more challenging than it might appear at first sight, since β̂n,SP , β̂n,P and ŵn are
mutually dependent random variables and their randomness needs to be dealt with at the
same time. For this purpose, I will utilize the subsequence technique employed by Cheng,
Liao, and Shi (2019).

In order to state an important intermediate result and to explain its rationale, some
additional notation is needed. For any F ∈ F and any d ∈ Rk

∞, define

uF,d ≡ (d′, vech(VF,SP )′, vech(VF,P )′, vec(covF )′)′ .

Note that the subvector d of uF,d does not depend on F , and the rest of uF,d does not depend
on d. Let

U ≡ {uF,d: ‖d‖ <∞, and F ∈ F with δF = 0]}. (4.13)

and
U∞ ≡ {uF,d: ‖d‖ = ∞, and F ∈ F}. (4.14)

18In fact, d is not root-n estimable, since its information bound is zero.
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For any uF,d ∈ U ∪ U∞, define

r(uF,d) ≡ E
(
ξ̄′F,dΥξ̄F,d − ξ′F,SPΥξF,SP

)
,

where ξ̄F,d and ξF,SP are defined in equations (4.11) and (4.9), respectively. U and U∞ defined
here may appear similar to the set S defined in equation (4.8), but they are different. For any
uF,d ∈ U ∪U∞, the corresponding δ ≡ n−1/2d is a different object from δF associated with F .
S is the set of actual nuisance parameter vectors that determine the asymptotic properties
of β̂n,SP , β̂n,P and β̂n,ŵn under DGPs in F . In contrast, U is the set of all hypothetical
nuisance parameter vectors that would have prevailed had the asymptotic variance-covariance
matrices VF,SP , VF,P and covF been the same as some DGP with zero bias (δF = 0) from
F and had the asymptotic bias d been finite. Note that if uF,d ∈ U (i.e., ‖d‖ < ∞), the
corresponding δ ranges from being zero to approaching to infinity at any rate that is not faster
than n1/2, corresponding to correct specification or mild misspecification of the parametric
restrictions. Similarly, U∞ is the set of all hypothetical nuisance parameter vectors that would
have prevailed had the asymptotic variance-covariance matrices VF,SP , VF,P and covF been
the same as some DGP from F and had the asymptotic bias d been infinite. Note that if
uF,d ∈ U∞ (i.e., ‖d‖ = ∞), the corresponding δ approaches to infinity at faster than n1/2

rate, corresponding to severely misspecification of the parametric restrictions. Together, U
and U∞ are a device that allows me to compare the asymptotic risk of β̂n,ŵn to that of β̂n,SP
uniformly over varied degrees of misspecification of the parametric restrictions.

To show the main uniform dominance result, I will first approximate the bounds of
asymptotic risk difference using transformation of r(u) for the mildly misspecified case (in-
cluding the correct specification case, encompassed in U) and the severely misspecified case
separately (encompassed in U∞), and then combine the two cases together.

Lemma 2. Suppose: (i) Conditions 1 - 3 hold; (ii) tr(AF ) > 0 and tr(BF ) > 0. Then

AsyRD(β̂n,ŵn , β̂n,SP ) =max

{
sup

uF,d∈U
r(uF,d), 0

}
(4.15)

AsyRD(β̂n,ŵn , β̂n,SP ) =min

{
inf

uF,d∈U
r(uF,d), 0

}
. (4.16)

Proof. See Appendix B.

If the parametric restrictions are severely misspecified, then I have uF,d ∈ U∞ (and hence
‖d‖ = ∞). In this case, Lemma 1(ii) states that the asymptotic distributions of β̂n,ŵn and
β̂n,SP are the same, and therefore r(uF,d) = 0. The key message of Lemma 2 is that the upper
(or lower) bound of the asymptotic risk difference is determined by the maximum between
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supuF,d∈U r(uF,d) and supuF,d∈U∞ r(uF,d) = 0 (or the minimum between infuF,d∈U r(uF,d) and
infuF,d∈U∞ r(uF,d) = 0). As mentioned before, the former corresponds to the DGPs under
which the parametric restrictions are correctly specified or mildly misspecified, and the later
corresponds to the severely misspecified case. max

{
supuF,d∈U r(uF,d), 0

}
characterizes the

least favorable DGP for the averaging estimator, and min
{
infuF,d∈U r(uF,d), 0

}
characterizes

the most favorable.
By Lemma 2, showing that supuF,d∈U r(uF,d) ≤ 0 and infuF,d∈U r(uF,d) < 0 is sufficient for

the uniform dominance result.

Theorem 1. Suppose Conditions 1 - 3 hold. If tr(AF ) > 0, tr(BF ) > 0 and tr(AF ) ≥
4ρmax(AF ) for any F ∈ F with δF = 0, then equation (4.5) holds. If, in addition,
tr(AF ) > 4ρmax(AF ), then equation (4.4) holds. Thus, the averaging estimator β̂n,ŵn uni-
formly dominates the semiparametric estimator β̂n,SP .

Proof. See Appendix B.

To give some intuition for the conditions in Theorem 1, let us consider the case where
the researcher chooses Υ = (VF,SP − covF )−1. In this case, the condition tr(AF ) > 0 becomes
VF,SP > covF , which is a necessary condition for VF,SP > VF,P . The latter indicates that the
parametric estimator should achieve strict efficiency gain over the semiparametric estimator.
And the condition tr(AF ) ≥ 4ρmax(AF ) becomes k ≥ 4, which requires the researcher to
consider the overall risk of multiple parameters of interest, but not a single coordinate. Such
dimension condition is common for shrinkage estimators. For example, my condition here is
stronger than the condition k ≥ 3 for the estimators in James and Stein (1961) and Hansen
(2016), the same as k ≥ 4 for the averaging estimator in Cheng, Liao, and Shi (2019),
and is weaker than k ≥ 5 for the the estimators in Judge and Mittelhammer (2004) and
Mittelhammer and Judge (2005).

5 Monte Carlo Experiments

Example 1 (cont’d) - Sample Selection Model. In my Monte Carlo experiments, I let
β1 = (1, 2, 3, 4)′, β2 = (1, 1, 1, 1)′, and (X ′

1i, X
′
2i)

′ ∼ N (08×1, I8). The first step parametric
restriction is that the two error terms (U1i, U2i) are jointly normally distributed. For the
correct specification, I let the true marginal distributions of U1i and U2i be both standard
normal. For the misspecification, I let them be logistic distributions with mean µ = 0

and variance s2π2/3, and vary the values s ∈ {0.5, 1, 2} (hence also vary the degree of
misspecification). For both the correct specification and the misspecification, I vary the
degree of selection by varying ρ = Corr(U1i, U2i) from 0 to 0.9 with 0.05 steps. Note that
when ρ = 0, there is no misspecification in all of these cases since there is no sample selection
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(a) Example 1: Sample Selection Model (n = 250)

(b) Example 1: Sample Selection Model (n = 1000)

(c) Example 2: Quantile Treatment Effects Model (n = 1000)

Figure 1: Simulation Results for Examples 1 and 2
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(so no correction is needed). Different sample sizes n ∈ {250, 1000} are considered, and I
repeat R = 10000 times. The semiparametric estimator β̂n,SP uses the kernel approximation
for the h function, and the parametric estimator β̂n,P first estimates β2 using probit, then
plugs in the inverse Mill’s ratio to estimate β1. I choose Υ = I4, and normalize the MSE of
the semiparametric estimator to unity.

The normalized MSEs of the averaging estimator are reported in Figures 1(a) and 1(b),
separately for different sample sizes. The thin black line at the level of one is the semi-
parametric benchmark, being below it means that the averaging estimator has smaller MSE
than the semiparametric estimator. The thick black line represents the normalized MSE of
the averaging estimator under the correct specification. The blue, red and green dashed lines
represent normalized MSEs of the averaging estimator when the degree of misspecification s

is 0.5, 1, 2, respectively.
A few observations can be made here. First, when the normality restriction is correctly

specified, the averaging estimator performs very well. This is natural, since in this case the
parametric estimator is consistent and more efficient. Second, when the normality restriction
is misspecified, the averaging estimator still has smaller MSEs than the robust semiparamet-
ric estimator, regardless of the degree of misspecification and the degree of selection. Overall,
the averaging estimator achieves sizable improvement compared to the semiparametric bench-
mark, and the averaging weight is strictly between zero and one, because the efficiency gain
of β̂n,P outweighs its bias in this particular Monte Carlo setting.

Example 2 (cont’d) - Quantile Treatment Effects. I modify the Monte Carlo model
used by Firpo (2007) and focus on the quantiles at τ = (0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95). The
parameter values are chosen such that the true QTEs are ∆ = (7.59, 6.76, 5.64, 5.00, 4.36, 3.24,

2.41).19 I consider sample size n = 1000 and repeat R = 1000 times. The semiparametric
estimator β̂n,SP uses an 8th order polynomial logit in (X1i,X2i) proposed by Hirano, Imbens,
and Ridder (2003) (and also employed by Firpo, 2007) to estimate the propensity score;
the parametric estimator β̂n,P uses polynomial probit in (X1i,X2i) to estimate the propensity
score, and I vary the order of the polynomial k ∈ {1, . . . , 6}. I choose Υ = I7 and normalize
the MSE of the semiparametric estimator to unity.

Figure 1(c) plots the MSEs of the averaging estimator and of the parametric estimator
for different polynomial probit order k. The thin black line at the level of one is again the
semiparametric benchmark. The blue dashed line represents the MSEs of the parametric
estimator. In this particular setting, all of the polynomial probit are misspecified,20 and the
misspecification bias outweighs the efficiency gain by imposing a parametric restriction. As

19See Section 2 of the supplement to Firpo (2007) for details of the model. The parameter values I choose
are µ1 = 1, µ2 = 5, δ0 = −1, δ1 = 5, δ2 = −1, δ3 = −0.05, γ1 = −5, γ2 = 1, β = 5, σϵ0 = 5 and σϵ1 = 2.5.

20In fact, the propensity score is a logit function that depends on a quadratic form of (X1i, X2i). See
Section 2 of the supplement to Firpo (2007) for details.
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a result, none of the MSEs of the parametric estimator β̂n,P is below the benchmark. For
smaller k, the MSEs of β̂n,P can be as large as nearly three times of those of β̂n,SP . On the
contrary, the MSEs of the averaging estimator β̂ŵ (black dashed line) never go higher than
those of β̂n,SP , even for smaller k. This experiment highlights the robustness of the averaging
estimator.

Unlike Example 1, the averaging estimator performs the same as β̂n,SP (dashed and solid
black lines on top of each other), and the averaging weight is almost always zero, because the
performance of β̂n,P (dashed blue line) is much worse than β̂n,SP in this particular Monte
Carlo setting.

6 Conclusion

This paper studies the two step M estimation of a finite dimensional parameter in a semipara-
metric model which contains a potentially infinite dimensional first step nuisance parameter.
I present an averaging estimator that combines a semiparametric estimator based on non-
parametric first step and a parametric estimator which imposes parametric restrictions on
the first step, where the averaging weight is the sample analog of an infeasible optimal weight
that minimizes quadratic risk functions. Using a uniform asymptotic framework, I show that
under mild sufficient conditions, the asymptotic lower bound of the truncated quadratic risk
differences between the averaging estimator and the semiparametric estimator is strictly less
than zero under a class of DGPs that includes both correct specification and misspecifica-
tion of the parametric restrictions, and the asymptotic upper bound is weakly less than zero.
This uniform dominance of the averaging estimator is illustrated by two specific widely used
semiparametric models.
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Appendix A Details on the Examples

Example 1 (cont’d) - Sample Selection Model. To focus on the sample selection issue, I
assume that EF (U1i|X1i, X2i) = EF (U2i|X1i, X2i) = 0, EF (U

2
1i|X1i, X2i) = EF (U

2
2i|X1i, X2i) =

1, and let ρF ≡ EF (U1iU2i|X1i, X2i) for all DGPs in F . Let λi ≡ λ(−X ′
2iγF ) denote the in-

verse Mill’s ratio. Under the joint normality restriction, V1i is conditionally heteroskedastic,
i.e., EF (V

2
1i|X1i, λi, Y2i = 1) = (1−ρ2F )+ρ2F (1−λiX ′

2iγF −λ2i ), so it is tempting to use feasible
generalized least square (FGLS) in the second step of Heckman (1979) two step estimator.
Heckman (1979), however, points out that the FGLS estimator is not asymptotically efficient
due to non-diagonality of the information matrix (see Heckman, 1977, for details), and the
MLE possesses undesirable numerical properties (see Wales and Woodland, 1980; Nelson,
1984, for more discussion). Since the proposed averaging estimator does not require β̂n,P to
be asymptotically efficiency under the parametric restriction in order to achieve dominance,
I employ OLS in the second step of β̂n,P in this example for exposition purpose. For β̂n,SP , I
follow Robinson (1988) and use the Nadaraya-Watson estimators for the nuisance functions
h1F (x2) ≡ EF (Y1|X2 = x2) and h2F (x2) ≡ EF (X1|X2 = x2).

In this example, let Q(z, β, h) ≡ 1
2
[y1 − h1(x2)− (x1 − h2(x2))

′β]2 where z represents the
vector of all observed variables, so that QF (β, h) in equation (3.1) equals to EF [Q(Z, β, h)],
where the expectation is taken with regard to the data Z. Borrowing some notation from
Ichimura and Lee (2010) and noting that h does not depend on β, one gets

∆1(z) ≡ DβQ(z, β, h) = [y1 − h1(x2)− (x1 − h2(x2))
′β](x1 − h2(x2)),

Dββ′Q(z, β, h) = (x1 − h2(x2))(x1 − h2(x2))
′,

V0 =
d2Q(β, h)

dβdβ′ = Dββ′Q(β, h) = E[(X1 − h2(X2))(X1 − h2(X2))
′],

DhQ(z, β, hF )[h] = − [y1 − h1F (x2)− (x1 − h2F (x2))
′β](h1(x2)− h2(x2)

′β),

d

dβ′DhQ(β, hF )[h] = DβhQ(β, hF )[h]

= EF [(X1 − h2F (X2))
′β(h1(X2)− h2(X2)

′β]

+ EF [(Y1 − h1F (X2)− (X1 − h2F (X2))
′β)h2(X2)]

= 0,

where the last equality holds by the law of iterated expectations (i.e., first conditional on X2).
This implies that Γ1(z), the term in Ichimura and Lee (2010) that captures the impact of
first step estimation errors of h on the asymptotic distribution of β̂n, is zero. By Theorem
3.3 of Ichimura and Lee (2010), the non-centered influence function of an estimator β̂n is
ψ(z) = V −1

0 ∆1(z). The sample analogs of the non-centered influence functions of β̂n,SP and
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β̂n,P in equations (3.13) and (3.14), therefore, follow this general formula.

Example 2 (cont’d) - Quantile Treatment Effects. First I describe how to obtain
the estimator β̂n once the estimated propensity score function p̂n(x) is available. Let Ui ≡
max{Yi − q, 0}, Vi ≡ max{q − Yi, 0}; and define the n × 1 vectors Y ≡ (Y1, . . . , Yn)

′, U ≡
(U1, . . . , Un)

′, V ≡ (V1, . . . , Vn)
′, ŵn,1 ≡ (ŵn,1,1, . . . , ŵn,1,n)

′ and ŵn,0 ≡ (ŵn,0,1, . . . , ŵn,0,n)
′,

where ŵn,j,i (j = 0, 1 and i = 1, . . . , n) are defined in equation (2.5). For fixed τ ∈ (0, 1),
the following linear programming problem gives rise to q̂1,τ :

min
(q,U ′,V ′)′

τŵ′
n,1U + (1− τ)ŵ′

n,1V

s.t.qI+ U − V − Y = 0,

(q, U ′, V ′)′ ∈ R× R2n
+ ;

and the following linear programming problem gives rise to q̂0,τ :

min
(q,U ′,V ′)′

τŵ′
n,0U + (1− τ)ŵ′

n,0V

s.t.qI+ U − V − Y = 0,

(q, U ′, V ′)′ ∈ R× R2n
+ .

Next, one may follow Firpo (2007) to use the series logit propensity score estimator as
p̂n(x) and get β̂n,SP . Alternatively, one may use the linear probit propensity score estimator
Φ(x′γ̂n) as p̂(x) to get β̂n,P .

Theorem 1 in Firpo (2007) shows that the influence function of β̂n,SP is given by ψτ (y, t, x)

in the following equation (A.1).

πj,τ (y) ≡ −I{y ≤ qj,τ} − τ

fj(qj,τ )
, j = 0, 1,

ψ1,τ (y, t, x) ≡
t

p(x)
· π1,τ (y)−

t− p(x)

p(x)
· E[π1,τ (Y )|x, T = 1],

ψ0,τ (y, t, x) ≡
1− t

1− p(x)
· π0,τ (y) +

t− p(x)

1− p(x)
· E[π0,τ (Y )|x, T = 0],

ψτ (y, t, x) ≡ ψ1,τ (y, t, x)− ψ0,τ (y, t, x), (A.1)

where fj(q) denotes the probability density (pdf) function of the potential outcome Yj,i eval-
uated at q ∈ R for j = 0, 1. By slightly modifying the argument in the proof of Theorem 1
in Firpo (2007) (in Appendix 3 of that paper), one can show that the influence function of
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β̂n,P is given by ψτ,P (y, t, x) in equation (A.2) as follows.21

πj,τ,P (y) ≡ −I{y ≤ qj,τ,P} − τ

fj(qj,τ,P )
, j = 0, 1,

ψ1,τ,P (y, t, x) ≡
t

Φ(x′γ)
· π1,τ,P (y)−

t− Φ(x′γ)

Φ(x′γ)
· E[π1,τ,P (Y )|x, T = 1],

ψ0,τ,P (y, t, x) ≡
1− t

1− Φ(x′γ)
· π0,τ,P (y) +

t− Φ(x′γ)

1− Φ(x′γ)
· E[π0,τ,P (Y )|x, T = 0],

ψτ,P (y, t, x) ≡ ψ1,τ,P (y, t, x)− ψ0,τ,P (y, t, x), (A.2)

where qj,τ,P denotes the pseudo-true quantile under the probit restriction. Note that in the
above equation, fj and E denote the true pdf function and expectation operator, regardless of
the probit restriction. The sample analogs of these influence functions, therefore, are given
in equations (3.15) and (3.16).

Appendix B Proofs

Justification for Condition 2(ii).
Note that the asymptotic properties of β̂n,SP do not depend on whether ‖d‖ < ∞ or

‖d‖ = ∞, so we still have n1/2(β̂n,SP − βFn)
d.−→ ξF,SP under the same low-level conditions

like in part (i).
To study the asymptotic properties of β̂n,P when ‖d‖ = ∞, I consider two cases: (i)

δFn = o(1) and (ii) ‖δFn‖ > c for some c > 0. For case (i), let ψF,P (z) denote the (centered)
influence function of β̂n,P under DGP F , which is an Op(1) term, then by the definition of
βF,P and δ,

n1/2(β̂n,P − βFn,P ) = n−1/2

n∑
i=1

ψFn,P (Zi) + op(1)

=⇒ n1/2(β̂n,P − βFn) = n1/2δFn +Op(1). (B.1)

Note that the presumption of Condition 2(ii) is that ‖n1/2δFn‖ → ‖d‖ = ∞, then nδ′Fn
δFn →

∞, which together with equation (B.1) implies that ‖n1/2(β̂n,P − βFn)‖
p.−→ ∞.

For case (ii), note that βF,P is defined in equation (4.7), then under the same conditions
for β̂n,SP = βFn+op(1), one gets β̂n,P = βFn,P+op(1).22 This, combined with the presumption

21Firpo (2007) approach is in turn based on Hirano, Imbens, and Ridder (2003) and Newey (1995). Details
are omitted here.

22This is a familiar result for pseudo-true parameter value, (e.g., Newey and McFadden, 1994, Section 2).
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that ‖δFn‖ = ‖βFn,P − βFn‖ > c, implies that

‖n1/2(β̂n,P − βFn)‖ ≥ |‖n1/2(β̂n,P − βFn,P )‖ − ‖n1/2δFn‖| = ‖n1/2δFn‖ · (1 + op(1))
p.−→ ∞.

Proof of Lemma 1

Proof. Part (i). Recall that V̂n,SP , V̂n,P and ĉovn are consistent estimators of VFn,SP , VFn,P

and covFn , respectively, then the result in part (i) follows by Condition 2(i) and the contin-
uous mapping theorem.

Part (ii). Because the probability limits of V̂n,SP , V̂n,P and ĉovn are finite and ‖n1/2(β̂n,P−
β̂n,SP )‖

p.−→ ∞, one has ŵn
p.−→ 0 by the continuous mapping theorem. This, combined with

the Slutsky’s theorem, implies that n1/2(β̂n,ŵn − βF )
d.−→ ξF,SP .

In what follows, C and κ are generic symbols for positive constants that might take
different values at each appearance. The following notation will be used in the proofs. For
any uF,d ∈ U ∪ U∞ and any positive finite ζ, define

Rζ(uF,d) ≡ EF

(
min

{
ξ′F,SPΥξF,SP , ζ

})
, (B.2)

R̄ζ(uF,d) ≡

{
EF

(
min

{
ξ̄′F,dΥξ̄F,d, ζ

})
, if ‖d‖ <∞,

EF

(
min

{
ξ′F,SPΥξF,SP , ζ

})
, if ‖d‖ = ∞,

(B.3)

rζ(uF,d) ≡ R̄ζ(uF,d)−Rζ(uF,d) (B.4)

=

{
EF

(
min{ξ̄′F,dΥξ̄F,d, ζ} −min{ξ′F,SPΥξF,SP , ζ}

)
, if ‖d‖ <∞,

0, if ‖d‖ = ∞,
(B.5)

r(uF,d) ≡

{
EF

(
ξ̄′F,dΥξ̄F,d − ξ′F,SPΥξF,SP

)
, if ‖d‖ <∞,

0, if ‖d‖ = ∞.
(B.6)

For any positive finite ζ, define

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≡ lim sup
n→∞

sup
F∈F

EF [ℓζ(β̂n,ŵn , βF )− ℓζ(β̂n,SP , βF )], (B.7)

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≡ lim inf
n→∞

inf
F∈F

EF [ℓζ(β̂n,ŵn , βF )− ℓζ(β̂n,SP , βF )]. (B.8)

Lemma B.1. Suppose Conditions 1 - 3 hold. Then

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≤ max

{
sup

uF,d∈U
rζ(uF,d), 0

}
, (B.9)

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ min

{
inf

uF,d∈U
rζ(uF,d), 0

}
. (B.10)
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Proof. First I prove inequality (B.9). By the definition of supremum and the definition
of AsyRDζ(β̂n,ŵn , β̂n,SP ) in equation (B.7), there exists a sequence of DGPs, denoted by
{Fn}n∈N, such that

AsyRDζ(β̂n,ŵn , β̂n,SP ) = lim sup
n→∞

EFn [ℓζ(β̂n,ŵn , βFn)− ℓζ(β̂n,SP , βFn)].

The real sequence {EFn [ℓζ(β̂n,ŵn , βFn)− ℓζ(β̂n,SP , βFn)]}n∈N itself may not be convergent,
but by the definition of limsup, there exists a subsequence of {n}n∈N, denoted by {pn}n∈N,
such that the corresponding real subsequence {EFpn

[ℓζ(β̂n,ŵn , βFpn
) − ℓζ(β̂n,SP , βFpn

)]}n∈N is
convergent. Let {Fpn}n∈N denote the subsequence of DGPs corresponding to {pn}n∈N, then

AsyRDζ(β̂n,ŵn , β̂n,SP ) = lim
n→∞

EFpn
[ℓζ(β̂n,ŵn , βFpn

)− ℓζ(β̂n,SP , βFpn
)]. (B.11)

Now consider the sequence of k-dimensional vectors {p1/2n δFpn
}n∈N, and let {p1/2n δFpn ,ι}n∈N

(ι = 1, . . . , k) denote their ιth components. For ι = 1, I have either (i) lim supn→∞ |p1/2n δFpn ,ι| <
∞ or (ii) lim supn→∞ |p1/2n δFpn ,ι| = ∞. For case (i), there exists some subsequence {pn,ι}n∈N
such that p1/2n,ι δFpn,ι ,ι → dι for some dι ∈ R, by the definition of limsup. For case (ii),
there exists some subsequence {pn,ι}n∈N such that p1/2n,ι δFpn,ι ,ι → ∞ or −∞, by the defini-
tion of limsup. In both cases, therefore, there exists some subsequence {pn,ι}n∈N such that
p
1/2
n,ι δFpn,ι ,ι → dι for some dι ∈ R∞. Since k is finite, I sequentially apply the same argument

to all components ι = 2, . . . , k and let the resulting subsequence be denoted by {pn,k}n∈N.
So far I have shown that p1/2n,kδFpn,k

→ d for some d ∈ Rk
∞. Then we consider {S(Fpn,k

)}n∈N,
the sequence of nuisance parameter vectors in S induced by DGPs {Fpn,k

}n∈N. {S(Fpn,k
)}n∈N

itself may not be convergent, but since S is compact by Condition 3(i), there exists a conver-
gent subsequence, denoted by {S(Fp∗n)}n∈N, such that S(Fp∗n) −→ s∗ with s∗ ∈ S. Moreover,
by Condition 3(ii), there exists a DGP F ∗ in F such that S(F ∗) = s∗. As a result, I have
shown that there exists some subsequence {p∗n}n∈N of {pn}n∈N such that

p∗1/2n δFp∗n
→ d for some d ∈ R∞ and S(Fp∗n) −→ S(F ∗) for some F ∗ ∈ F . (B.12)

Note that for any subsequence of {pn}n∈N, the limit of the right hand side in equation (B.11)
remains the same, which implies

AsyRDζ(β̂n,ŵn , β̂n,SP ) = lim
n→∞

EFp∗n
[ℓζ(β̂n,ŵn , βFp∗n

)− ℓζ(β̂n,SP , βFp∗n
)]. (B.13)

Equation (B.4) suggests that in order to prove equation (B.7), one needs to link the
right hand side of equation (B.13) with Rζ(uF,d) and R̄ζ(uF,d) defined in equations (B.2) and
(B.3). First consider the case where ‖d‖ < ∞ in equation (B.12). By Condition 2(i) and
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Lemma 1(i),

p∗1/2n (β̂n,SP − βFp∗n
)

d.−→ ξF,SP and p∗1/2n (β̂n,ŵn − βFp∗n
)

d.−→ ξ̄F,d,

which combined with the continuous mapping theorem implies that

ℓ(β̂n,SP , βFp∗n
)

d.−→ ξ′F,SPΥξF,SP and ℓ(β̂n,ŵn , βFp∗n
)

d.−→ ξ̄′F,dΥξ̄F,d.

Since Υ is positive semi-definite, ξ′F,SPΥξF,SP and ξ̄′F,dΥξ̄F,d are both nonnegative. Note that
the function f(x) ≡ min{x, ζ} is a bounded continuous function of x ≥ 0 for fixed positive
ζ. Applying the Portmanteau lemma (e.g., Lemma 2.2 in Van der Vaart, 2000) and invoking
equations (B.2) and (B.3), one gets

EFp∗n

[
ℓζ(β̂n,SP , βFp∗n

)
]
→ Rζ(uF ∗,d) and EFp∗n

[
ℓζ(β̂n,ŵn , βFp∗n

)
]
→ R̄ζ(uF ∗,d). (B.14)

Then consider the case where ‖d‖ = ∞ in equation (B.12). By Condition 2(ii) and Lemma
1(ii),

p∗1/2n (β̂n,SP − βFp∗n
)

d.−→ ξF,SP and p∗1/2n (β̂n,ŵn − βFp∗n
)

d.−→ ξF,SP .

Using the same argument, one also gets equation (B.14) in this case. Combine equations
(B.4), (B.13) and (B.14), one can unify the two cases and write

AsyRDζ(β̂n,ŵn , β̂n,SP ) = rζ(uF ∗,d), for some F ∗ ∈ F and some d ∈ Rk
∞

≤ max

{
sup

uF,d∈U
rζ(uF,d), sup

uF,d∈U∞

rζ(uF,d)

}

= max

{
sup

uF,d∈U
rζ(uF,d), 0

}
.

This proves equation (B.9).
The proof of equation (B.10) follows the same argument and hence is omitted here.

Lemma B.2. Suppose Conditions 1 - 3 hold. Then

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ max

{
sup

uF,d∈U
rζ(uF,d), 0

}
, (B.15)

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≤ min

{
inf

uF,d∈U
rζ(uF,d), 0

}
. (B.16)

Proof. First I prove inequality (B.15). By the definition of U in equation (4.13), δF = 0

for any F ∈ F such that uF,d ∈ U . For any uF,d ∈ U , let NϵF denote the smallest n such
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that n−1/2‖d‖ < ϵF , where ϵF satisfies Condition 3(ii). Then by Condition 3(ii), for each
n ≥ NϵF , there is an Fn ∈ F with δFn = n−1/2‖d‖ and ‖S̄(Fn) − S̄(F )‖ ≤ n−1/2C‖d‖κ for
some C, κ > 0. For each n ≤ NϵF , let Fn = F . Therefore, a sequence of DGPs {Fn}n∈N in
F satisfying n1/2δFn → d and S̄(Fn) → S̄(F ) is constructed for any uF,d ∈ U . Recalling the
definition of S̄(F ) after equation (4.8), this immediately implies that for such {Fn}n∈N,

n1/2δFn → d ∈ Rk, VFn,SP → VF,SP , covFn → covF , and VFn,P → VF,P . (B.17)

The real sequence {EFn [ℓζ(β̂n,ŵn , βFn)−ℓζ(β̂n,SP , βFn)]}n∈N that corresponds to {Fn}n∈N may
not be convergent, but by the definition of lim sup, there exist a subsequence {pn}n∈N of
{n}n∈N such that the corresponding real sequence {EFpn

[ℓζ(β̂n,ŵn , βFpn
)−ℓζ(β̂n,SP , βFpn

)]}n∈N
is convergent and

lim
n→∞

EFpn
[ℓζ(β̂n,ŵn , βFpn

)− ℓζ(β̂n,SP , βFpn
)] = lim sup

n→∞
EFn [ℓζ(β̂n,ŵn , βFn)− ℓζ(β̂n,SP , βFn)].

(B.18)
Since {pn}n∈N is a subsequence of {n}n∈N, equation (B.17) implies that

n1/2δFpn
→ d ∈ Rk, VFpn ,SP → VF,SP , covFpn

→ covF , and VFpn ,P → VF,P . (B.19)

Combined with Condition 2(i) and Lemma 1(i), this implies that

p1/2n (β̂n,SP − βFpn
)

d.−→ ξF,SP , and p1/2n (β̂n,ŵn − βFpn
)

d.−→ ξ̄F,d,

which, combined with the continuous mapping theorem, in turn implies that

lim
n→∞

EFpn

[
ℓζ(β̂n,SP , βFpn

)
]
= R(uF,d), and lim

n→∞
EFpn

[
ℓζ(β̂n,ŵn , βFpn

)
]
= R̄(uF,d). (B.20)

This, combined with equation (B.18), the definition of AsyRDζ(β̂n,ŵn , β̂n,SP ) in equation
(B.7) and the definition of r(uF,d) in equation (B.4), implies that for any uF,d ∈ U ,

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ lim sup
n→∞

EFn [ℓζ(β̂n,ŵn , βFn)− ℓζ(β̂n,SP , βFn)] = r(uF,d),

which further implies that

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ sup
uF,d∈U

r(uF,d). (B.21)

On the other hand, by the definition of U∞ in equation (4.14), for any uF,d ∈ U∞, either
(i) δF = 0 or (ii) ‖δF‖ > 0. For case (i), let Ik be a k × 1 vector of ones and let NϵF denote
the smallest n such that n−1/4‖Ik‖1/2 = n−1/4k1/2 < ϵF , where ϵF satisfies Condition 3(ii).
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Then by Condition 3(ii), for each n ≥ NϵF , there is an Fn ∈ F with δFn = n−1/4k1/2 and
‖S̄(Fn) − S̄(F )‖ ≤ Cn−κ/4kκ/2 for some C, κ > 0. For each n ≤ NϵF , let Fn = F . For case
(ii), let Fn = F for n = 1, 2, . . .. Therefore, a sequence of DGPs {Fn}n∈N in F satisfying
n1/2δFn → ∞, δFn → F and S̄(Fn) → S̄(F ) is constructed for any uF,d ∈ U∞, regardless
of whether δF = 0 or ‖δF‖ > 0. Recalling the definition of S̄(F ) after equation (4.8), this
immediately implies that for such {Fn}n∈N,

‖n1/2δFn‖ → ∞, VFn,SP → VF,SP , covFn → covF , and VFn,P → VF,P .

Again, recalling the definition of S̄(F ) after equation (4.8), this immediately implies that
for the {Fn}n∈N in F ,

n1/2δFn → d ∈ Rk, VFn,SP → VF,SP , covFn → covF , and VFn,P → VF,P .

Then similar argument used to show equations (B.18) - (B.20) can be applied to show
that there exists a subsequence {pn}n∈N of {n}n∈N such that equations (B.18) and (B.20)
are satisfied, with the help of Condition 2(ii) and Lemma 1(ii). Combining this with the
definition of AsyRDζ(β̂n,ŵn , β̂n,SP ) in equation (B.7) and the definition of r(uF,d) in equation
(B.4), implies that for any uF,d ∈ U∞,

AsyRDζ(β̂n,ŵn , β̂n,SP ) ≥ lim sup
n→∞

EFn [ℓζ(β̂n,ŵn , βFn)− ℓζ(β̂n,SP , βFn)] = 0. (B.22)

Equation (B.15) immediately follows inequalities (B.21) and (B.22).
The proof of equation (B.16) follows the same argument and hence is omitted here.

Lemma B.3. Suppose: (i) Conditions 1 - 3 hold; (ii) tr(AF ) > 0 and tr(BF ) > 0. Then

sup
uF,d∈U

E
[(
ξ′F,SPΥξF,SP

)2] ≤ C, (B.23)

sup
uF,d∈U

E
[(
ξ̄′F,dΥξ̄F,d

)2] ≤ C. (B.24)

Proof. For any F ∈ F , since ξF,SP ∼ N (0k×1, VF,SP ) by Lemma 2, one gets

ξ′F,SPΥξF,SP
d.
= Z ′V

1/2
F,SPΥV

1/2
F,SPZ,

where Z ∼ N (0k×1, Ik×k). By Condition 3(i), and because Υ is a fixed matrix, there exists
some constant C such that

sup
F∈F

ρmax

(
Z ′V

1/2
F,SPΥV

1/2
F,SPZ

)
≤ C.
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This implies that

sup
uF,d∈U

E
[(
ξ′F,SPΥξF,SP

)2] ≤ sup
uF,d∈U

ρ2max

(
Z ′V

1/2
F,SPΥV

1/2
F,SPZ

)
· E[(Z ′Z)2] ≤ C,

where the second inequality holds because Z ∼ N (0k×1, Ik×k). Equation (B.23) follows since
the upper bound does not depend on F .

By the definition of ξ̄F,d, the Cauchy-Schwarz inequality and the simple inequality 2|ab| ≤
a2 + b2 for any real numbers a and b, one

ξ̄′F,dΥξ̄F,d ≤ 2ξ′F,SPΥξF,SP + 2w2
F (ξF,P + d− ξF,SP )

′ Υ(ξF,P + d− ξF,SP )

= 2ξ′F,SPΥξF,SP + 2w2
F

(
ξ̃F + d̃F

)′
D

(
ξ̃F + d̃F

)
, (B.25)

where

D ≡ [ −Ik Ik ]′Υ[ −Ik Ik ] (B.26)

to facilitate the analysis. Combine equation (B.25) and the simple inequality (a + b)2 ≤
2(a2 + b2) for any real numbers a and b, one gets

(
ξ̄′F,dΥξ̄F,d

)2 ≤8
(
ξ′F,SPΥξF,SP

)2
+ 8

[
w2

F

(
ξ̃F + d̃F

)′
D

(
ξ̃F + d̃F

)]2
≤C + 8

[
w2

F

(
ξ̃F + d̃F

)′
D

(
ξ̃F + d̃F

)]2
, (B.27)

where the second inequality is by equation (B.23). By the definitions of wF in Lemma 1 and
of AF and BF in Theorem 1, one has

w2
F

(
ξ̃F + d̃F

)′
D

(
ξ̃F + d̃F

)
=

[tr(AF )]
2
(
ξ̃F + d̃F

)′
D

(
ξ̃F + d̃F

)
[
tr(BF ) +

(
ξ̃F + d̃F

)′
D

(
ξ̃F + d̃F

)]2
≤ Ctr(AF )

= Ctr(ΥVF,SP )− Ctr(ΥcovF ),

where the inequality follows by tr(AF ) > 0, tr(BF ) > 0 and that (ξ̃F + d̃F )
′D(ξ̃F + d̃F ) ≥ 0

since Υ is positive semi-definite. Combined with the simple inequality (a+ b)2 ≤ 2(a2 + b2),
this implies that

E
[
w2

F

(
ξ̃F + d̃F

)′
D

(
ξ̃F + d̃F

)]2
≤ 2C[tr(ΥVF,SP )]2 + 2C[tr(ΥcovF )]2
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≤ 2C[tr(ΥVF,SP )]2 + 2C[tr(ΥVF,SP )]2 ≤ C, (B.28)

where the second inequality holds by Condition 2(i), Condition 3(i) and that the Cauchy-
Schwarz inequality implies covF ≤ max{VF,SP , VF,P} for any F ∈ F . Together, equations
(B.27) and (B.28) imply equation (B.24), since the upper bound does not depend on F .

Lemma B.4. Suppose: (i) Conditions 1 - 3 hold; (ii) tr(AF ) > 0 and tr(BF ) > 0. Then

lim
ζ→∞

sup
uF,d∈U

|rζ(uF,d)− r(uF,d)| = 0. (B.29)

Proof. First note that

sup
uF,d∈U

∣∣E [
min{ξ̄′F,dΥξ̄F,d, ζ} − ξ̄′F,dΥξ̄F,d

]∣∣
= sup

uF,d∈U

∣∣E [(
ζ − ξ̄′F,dΥξ̄F,d

)
I
{
ξ̄′F,dΥξ̄F,d > ζ

}]∣∣
≤ sup

uF,d∈U
E
[∣∣ζ − ξ̄′F,dΥξ̄F,d

∣∣ · I{ξ̄′F,dΥξ̄F,d > ζ
}]

≤ζ sup
uF,d∈U

E
[
I
{
ξ̄′F,dΥξ̄F,d > ζ

}]
+ sup

uF,d∈U
E
[(
ξ̄′F,dΥξ̄F,d

)
· I

{
ξ̄′F,dΥξ̄F,d > ζ

}]
≤2ζ−1 sup

uF,d∈U
E
[(
ξ̄′F,dΥξ̄F,d

)2] ≤ 2Cζ−1, (B.30)

where the first equality is by the fact that min{x, ζ} − x = (ζ − x) · I{x > ζ}; the first
inequality is by the Jensen’s inequality and the fact that an indicator function is always non-
negative; the second inequality holds because ζ > 0, ξ̄′F,dΥξ̄F,d ≥ 0, and the simple inequality
|a− b| ≤ a+ b for any non-negative real numbers a and b; the third inequality holds by the
Markov’s inequality;23 the fourth inequality is by (B.24).

By (B.23) and the same argument, I can show that

sup
uF,d∈U

|E [min{ξF,SPΥξF,SP , ζ} − ξF,SPΥξF,SP ]| ≤ 2Cζ−1. (B.31)

Combining inequalities (B.30) and (B.31), the definitions of rζ(uF,d) and r(uF,d) in equa-
tions (B.5) and (B.6), and the triangular inequality, one gets supuF,d∈U |rζ(uF,d)− r(uF,d)| ≤
4Cζ−1, which immediately implies equation (B.29).

23The first term is bounded using the Chebyshev’s inequality. Using the same argument as for the Markov’s
inequality, I can show that for non-negative random variable X and a > 0, E[X · I{X > a}] ≤ E(X2)/a,
since E(X2) = E[X2 · I{X > a}] + E[X2 · I{X ≤ a}] ≥ E[X2 · I{X > a}] ≥ aE[X · I{X > a}]. Applying this
result to the second term gives the desired inequality.
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Proof of Lemma 2

Proof. First, combining Lemmas B.1 and B.2 gives

AsyRDζ(β̂n,ŵn , β̂n,SP ) = max

{
sup

uF,d∈U
rζ(uF,d), 0

}
, (B.32)

AsyRDζ(β̂n,ŵn , β̂n,SP ) = min

{
inf

uF,d∈U
rζ(uF,d), 0

}
, (B.33)

for any finite ζ > 0. Then note that Lemma B.4 implies

lim
ζ→∞

sup
uF,d∈U

rζ(uF,d) = sup
uF,d∈U

r(uF,d), and lim
ζ→∞

inf
uF,d∈U

rζ(uF,d) = inf
uF,d∈U

r(uF,d).

Moreover, note that for uF,d ∈ U∞, equations (B.5) and (B.2) imply that both rζ(uF,d) =

r(uF,d) = 0. Furthermore, since max{x, 0} and min{x, 0} are both continuous functions of
x, the equalities above remain valid after applying these continuous functions; that is,

lim
ζ→∞

max

{
sup

uF,d∈U
rζ(uF,d), 0

}
=max

{
sup

uF,d∈U
r(uF,d), 0

}
, (B.34)

lim
ζ→∞

min

{
inf

uF,d∈U
rζ(uF,d), 0

}
=min

{
inf

uF,d∈U
r(uF,d), 0

}
. (B.35)

Combining equations (B.32), (B.34) and the definitions in equations (4.3) and (B.7)
gives the result in equation (4.15). Combining equations (B.33), (B.35) and the definitions
in equations (4.2) and (B.8) gives the result in equation (4.16).

Proof of Theorem 1

Proof. By Lemma 2, it suffices to show that supuF,d∈U r(uF,d) ≤ 0 and infuF,d∈U r(uF,d) < 0.
By the definition of ξ̄F,d, one gets

E(ξ̄′F,dΥξ̄F,d) =E(ξ′F,SPΥξF,SP ) + 2E[wF (ξF,P + d− ξF,SP )
′ΥξF,SP ]

+ E[w2
F (ξF,P + d− ξF,SP )

′Υ(ξF,P + d− ξF,SP )].

By the definitions of wF in equation (4.10) and of AF and BF in Lemma 1, this implies that
for any uF,d ∈ U ,

r(uF,d) = 2tr(AF )J1,F + [tr(AF )]
2J2,F , (B.36)
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where

J1,F ≡ E
[

(ξF,P + d− ξF,SP )
′ΥξF,SP

tr(BF ) + (ξF,P + d− ξF,SP )′Υ(ξF,P + d− ξF,SP )

]
,

J2,F ≡ E
[

(ξF,P + d− ξF,SP )
′Υ(ξF,P + d− ξF,SP )

[tr(BF ) + (ξF,P + d− ξF,SP )′Υ(ξF,P + d− ξF,SP )]2

]
.

Define

E ≡ [ −Ik Ik ]′Υ[ Ik 0k×k ],

then J1,F and J2,F can be re-written as

J1,F = E

[
(ξ̃F + d̃F )

′E(ξ̃F + d̃F )

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
,

J2,F = E

[
(ξ̃F + d̃F )

′D(ξ̃F + d̃F )

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]
,

where ξ̃F and d̃F are defined in Condition 2(i), and D is defined in (B.26).
First consider bounding J1,F . Define a function ηF (x) : R2k 7→ R2k for any x ∈ R2k as

follows
ηF (x) ≡

x

tr(BF ) + x′Dx
.

Its derivative is then

∂

∂x
ηF (x)

′ =
I2k

tr(BF ) + x′Dx
− 2Dxx′

[tr(BF ) + x′Dx]2
.

Note that J1,F = E[ηF (ξ̃F + d̃F )′E(ξ̃F + d̃F )] and tr(EṼF ) = −tr[Υ(VF,SP −covF )] = −tr(AF ),
where ṼF defined in Condition 2(i). Apply Lemma 2 in Hansen (2016), which is a matrix
version of the Stein’s lemma (Stein, 1956) to J1,F , one gets

J1,F =E
[
tr
(
∂

∂x
ηF (ξ̃F + d̃F )

′EṼF

)]
=E

[
−tr(AF )

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
− 2E

[
tr[D(ξ̃F + d̃F )(ξ̃F + d̃F )

′EṼF ]

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]

=E
[

−tr(AF )

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
+ 2E

[
−(ξ̃F + d̃F )

′EṼFD(ξ̃F + d̃F )

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]
.

(B.37)
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By the definitions of AF , D and E, one has

− (ξ̃F + d̃F )
′EṼFD(ξ̃F + d̃F )

=(ξ̃F + d̃F )
′[ −Ik Ik ]′Υ(VF,SP − covF )Υ[ −Ik Ik ](ξ̃F + d̃F )

≤ρmax[Υ
1/2(VF,SP − covF )Υ

1/2](ξ̃F + d̃F )
′[ −Ik Ik ]′Υ[ −Ik Ik ](ξ̃F + d̃F )

=ρmax(AF )(ξ̃F + d̃F )
′D(ξ̃F + d̃F ), (B.38)

where the last equality holds since ρmax[Υ
1/2(VF,SP − covF )Υ

1/2] = ρmax[Υ(VF,SP − covF )]

= ρmax(AF ). Combining the results in (B.37) and (B.38) gives

J1,F ≤E
[

−tr(AF )

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
+ 2E

[
ρmax(AF )(ξ̃F + d̃F )

′D(ξ̃F + d̃F )

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]

=E
[

2ρmax(AF )− tr(AF )

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
− E

[
2ρmax(AF )tr(BF )

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]
.

(B.39)

Then by applying some algebraic operations to J2,F , one gets

J2,F =E

[
tr(BF ) + (ξ̃F + d̃F )

′D(ξ̃F + d̃F )− tr(BF )

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]

=E
[

1

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
− E

[
tr(BF )

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]
.

(B.40)

Combining (B.36), (B.39) and (B.40) gives

r(uF,d) ≤ 2tr(AF )E
[

2ρmax(AF )− tr(AF )

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
− 2tr(AF )E

[
2ρmax(AF )tr(BF )

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]
+ [tr(AF )]

2E
[

1

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
− [tr(AF )]

2E
[

tr(BF )

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]
=E

[
tr(AF )[4ρmax(AF )− tr(AF )]

tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )

]
− E

[
tr(AF )tr(BF )[4ρmax(AF ) + tr(AF )]

[tr(BF ) + (ξ̃F + d̃F )′D(ξ̃F + d̃F )]2

]
.

(B.41)

If tr(AF ) > 0 and tr(BF ) > 0, then ρmax(AF ) > 0, and then the second term in (B.41)
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will be negative. If, in addition, tr(AF ) ≥ 4ρmax(AF ), then the first term in (B.41) will be
non-negative. This completes the proof of supuF,d∈U r(uF,d) ≤ 0.

If, furthermore, tr(AF ) > 4ρmax(AF ) for some F ∈ F , then r(uF,d) < 0. This indicates
that infuF,d∈U r(uF,d) < 0.
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