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Abstract

This supplemental appendix provides the proofs of the main results presented in Hahn, Liao,

Ridder, and Shi (2023), and three examples that serve to illustrate these results. Sections A

and B contain the proof of their Theorems 1 and 2 respectively. Section C outlines the setups

used for the three examples, while Section D presents the computation of the influence function

of the semiparametric estimator within these examples.

A Proof of Theorem 1

The theorem is proved using the arguments in Sections 2 and 3 of Newey (1994). Under Assump-

tions 1(i) and 2(i) of Hahn et al. (2023), (3.10) in Newey (1994) shows that the influence function

of β̂ can be derived from (5) in Hahn et al. (2023), and it takes the following form

−
(
∂E [J(Z, β∗, π∗)]

∂β>

)−1
(J(Z, β∗, π∗) + η(Z)) , (A.1)

where η(Z) satisfies E [η(Z)] = 0 and

∂E [J(Z, β∗, π∗,τ )]

∂τ
= E

[
η(Z)

∂ ln(fz,τ (Z))

∂τ

]
, (A.2)
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where fz,τ (·) denotes any one-dimensional path of density of Z indexed by τ ∈ R such that the

path hits the true density at τ = 0, and π∗,τ is the counterpart of π∗ under the path density fz,τ (·).
Let ϕπ(Z) denote the influence function of the first-step estimator, that is, E [ϕπ(Z)] = 0 and

∂π∗,τ
∂τ

= E
[
ϕπ(Z)

∂ ln(fz,τ (Z))

∂τ

]
. (A.3)

From (A.2) and (A.3), we get η(Z) = ∂E[J(Z,β∗,π∗)]
∂π>

ϕπ(Z), and hence the influence function of β̂ is

−
(
∂E [J(Z, β∗, π∗)]

∂β>

)−1(
J(Z, β∗, π∗) +

∂E [J(Z, β∗, π∗)]

∂π>
ϕπ(Z)

)
(A.4)

by Newey (1994). It remains to find the explicit forms of J(Z, β∗, π∗), ∂E [J(Z, β∗, π∗)] /∂π
> and

∂E [J(Z, β∗, π∗)] /∂β
>, which are calculated below in (A.11), (A.17) and (A.18) respectively.

The rest of the proof proceeds in three steps. Step 1 and Step 2 contain auxiliary results which

are used in Step 3. The main result of the theorem is proved in Step 3.

Step 1. In this step, we show that

E [ψλ (Z, β∗, λ∗ (v))| v] = 0. (A.5)

First note that h (v (π) ;β, π) satisfies the first-order condition

E [ψλ (Z, β, h (v (π) ;β, π))λ (v (π))] = 0 (A.6)

for any function λ (v (π)) of v(π). Evaluating (A.6) at (β∗, π∗) and using h (v (π∗) ;β∗, π∗) = λ∗ (v),

we obtain E [ψλ(Z, β∗, λ∗(v))λ(v)] = 0 for any function λ (v) of v, which immediately implies (A.5).

Step 2. In this step, we show that for any π,

∂h (v (π) ;β∗, π)

∂β
= −

E [ψλ,β (Z, β∗, h (v (π) ;β∗, π))| v (π)]

E [ψλ,λ (Z, β∗, h (v (π) ;β∗, π))| v (π)]
. (A.7)

Under Assumptions 1(i) and 2(i, v) of Hahn et al. (2023), we can differentiate (A.6) with respect

to β and apply the chain rule to obtain

0 = E
[(
ψλ,β(Z, β, h (v (π) ;β, π)) + ψλ,λ(Z, β, h (v (π) ;β, π))

∂h (v (π) ;β, π)

∂β

)
λ (v (π))

]
(A.8)

for any function λ (v (π)) of v (π), which implies that

0 = E
[
ψλ,β (Z, β∗, h (v (π) ;β∗, π)) + ψλ,λ (Z, β∗, h (v (π) ;β∗, π))

∂h (v (π) ;β∗, π)

∂β

∣∣∣∣ v (π)

]
, (A.9)

from which and the observation that ∂h (v (π) ;β∗, π) /∂β is a function of v (π), we get

0 = E [ψλ,β (Z, β∗, h (v (π) ;β∗, π))| v (π)]

+ E [ψλ,λ (Z, β∗, h (v (π) ;β∗, π))| v (π)]
∂h (v (π) ;β∗, π)

∂β
. (A.10)
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The claim in (A.7) follows from (A.10).

Step 3. We prove the claim of the theorem in this step. First, by the definition of J(Z, β∗, π∗)

in (6) and the definition of g∗(v) in (7) of Hahn et al. (2023), and the expression in (A.7), we get

J(Z, β∗, π∗) = ψβ (Z, β∗, λ∗ (v)) + ψλ (Z, β∗, λ∗ (v))
∂h (v (π∗) ;β∗, π∗)

∂β

= ψβ (Z, β∗, λ∗ (v))− g∗(v)ψλ (Z, β∗, λ∗ (v)) = ϕβ(Z). (A.11)

Next, from (5) of Hahn et al. (2023), we observe that

∂E [J(Z, β∗, π∗)]

∂π>
= E

[
ψβ,λ (Z, β∗, λ∗ (v))

d

dπ>
h (v (π∗) ;β∗, π∗)

]
+ E

[
ψλ,λ (Z, β∗, λ∗ (v)) g∗(v)

d

dπ>
h (v (π∗) ;β∗, π∗)

]
− E

[
ψλ (Z, β∗, λ∗ (v))

d

dπ>
g(v (π∗) ;π∗)

]
, (A.12)

where g(v (π) ;π) ≡ −∂h (v (π) ;β∗, π) /∂β. We recall that π enters h (v (π) ;β, π) in two places, first

as an argument of v (π) and second as a way of changing the entire functional form of h (v (π) ;β, π).

We will use the following notation to distinguish the two roles played by π:

d

dπ>
h (v (π1) ;β∗, π2) ≡

∂h (v (π1) ;β∗, π2)

∂π>1
+
∂h (v (π1) ;β∗, π2)

∂π>2
.

So we have
d

dπ>
h (v (π∗) ;β∗, π∗) ≡

∂h (v (π∗) ;β∗, π∗)

∂π>1
+
∂h (v (π∗) ;β∗, π∗)

∂π>2
. (A.13)

Moreover, because h (v (π∗) ;β∗, π∗) = λ∗ (v), we can see that

∂h (v (π∗) ;β∗, π∗)

∂π>1
=
∂λ∗ (v(π∗))

∂v

∂v (π∗)

∂π>
. (A.14)

We also note that ∂h (v (π∗) ;β∗, π∗) /∂π
>
2 is a function of v (π∗) = v, which together with (A.7),

(A.9) and the definition of g∗(v) implies that

E
[
ψβ,λ (Z, β∗, λ∗ (v))

∂h (v (π∗) ;β∗, π∗)

∂π>2

]
+ E

[
ψλ,λ (Z, β∗, λ∗ (v))

∂h (v (π∗) ;β∗, π∗)

∂β

∂h (v (π∗) ;β∗, π∗)

∂π>2

]
= E

[
E [ψλ,β (Z, β∗, λ∗ (v))− g∗(v)ψλ,λ (Z, β∗, λ∗ (v))| v]

∂h (v (π∗) ;β∗, π∗)

∂π>2

]
= 0, (A.15)

where we also used Assumption 2(iv) in Hahn et al. (2023), i.e., ψβ,λ (Z, β∗, λ∗ (v)) = ψλ,β (Z, β∗, λ∗ (v))

almost surely. Therefore, using (A.12), (A.13), (A.14) and (A.15), we get

∂E [J(Z, β∗, π∗)]

∂π>
= E

[
[ψλ,β (Z, β∗, λ∗(v))− g∗(v)ψλ,λ (Z, β∗, λ∗(v))]

∂λ∗ (v(π∗))

∂v

∂v (π∗)

∂π>

]
− E

[
ψλ (Z, β∗, λ∗(v))

d

dπ>
g(v (π∗) ;π∗)

]
. (A.16)
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Note that
d

dπ>
g(v (π) ;π) =

∂g(v (π1) ;π2)

∂π>1
+
∂g(v (π1) ;π2)

∂π>2
.

So we have
d

dπ>
g(v (π∗) ;π∗) =

∂g(v (π∗) ;π∗)

∂π>1
+
∂g(v (π∗) ;π∗)

∂π>2
,

where ∂g(v (π∗) ;π∗)/∂π
>
2 is a function of v (π∗) = v. Therefore, by (A.5),

E
[
ψλ (Z, β∗, λ∗ (v))

d

dπ>
g(v (π∗) ;π∗)

]
= E

[
ψλ (Z, β∗, λ∗ (v))

∂g(v (π∗) ;π∗)

∂π>1

]
= E

[
ψλ (Z, β∗, λ∗ (v))

∂g (v (π∗) ;π∗)

∂v

∂v (π∗)

∂π>

]
,

which together with (A.16), the definition of g∗(v), and ∂g (v (π∗) , π∗) /∂v = ∂g∗(v)/∂v implies

that

∂E [J(Z, β∗, π∗)]

∂π>
= E

[
[ψλ,β (Z, β∗, λ∗ (v))− g∗(v)ψλ,λ (Z, β∗, λ∗ (v))]

∂λ∗ (v(π∗))

∂v

∂v (π∗)

∂π>

]
− E

[
ψλ (Z, β∗, λ∗ (v))

∂g∗ (v)

∂v

∂v (π∗)

∂π>

]
= Ψβ,π. (A.17)

Finally, we calculate ∂E [J(Z, β∗, π∗)] /∂β
>. Specifically,

∂E [J(Z, β∗, π∗)]

∂β>
= E

[
ψβ,β (Z, β∗, λ∗ (v)) + ψβ,λ (Z, β∗, λ∗ (v))

∂h (v (π∗) ;β∗, π∗)

∂β>

]
+ E

[
∂h (v (π∗) ;β∗, π∗)

∂β
ψλ,β (Z, β∗, λ∗ (v))>

]
+ E

[
ψλ,λ (Z, β∗, λ∗ (v))

∂h (v (π∗) ;β∗, π∗)

∂β

∂h (v (π∗) ;β∗, π∗)

∂β>

]
+ E

[
ψλ (Z, β∗, λ∗ (v))

∂2h (v (π∗) ;β∗, π∗)

∂β∂β>

]
,

which together with (A.5), (A.7) and the definition of g∗(v) implies that

∂E [J(Z, β∗, π∗)]

∂β>
= E

[
ψβ,β (Z, β∗, λ∗ (v))− ψβ,λ (Z, β∗, λ∗ (v)) g∗(v)>

]
− E

[
g∗(v)ψλ,β (Z, β∗, λ∗ (v))>

]
+ E

[
ψλ,λ (Z, β∗, λ∗ (v)) g∗(v)g∗(v)>

]
= E

[
ψβ,β (Z, β∗, λ∗ (v))− ψλ,λ (Z, β∗, λ∗ (v)) g∗(v)g∗(v)>

]
= −Ψβ,β . (A.18)

Plugging the forms of J(Z, β∗, π∗), ∂E [J(Z, β∗, π∗)] /∂π
> and ∂E [J(Z, β∗, π∗)] /∂β

> (which are

obtained in (A.11), (A.17) and (A.18) respectively) in (A.4), and applying Assumptions 2(ii, iii)

in Hahn et al. (2023), we obtain the influence function stated in the theorem.

4



B Proof of Theorem 2

Taking derivative with respect to τ in (16) and applying the chain rule and Assumption 4(i) in

Hahn et al. (2023), we get

∂Eτ [µl(Zl, π∗,l)πl(Wl)]

∂τ
+ E

[
E [µl,π(Zl, π∗,l)|Wl]πl(Wl)

∂π∗,l,τ (Wl)

∂τ

]
= 0 (B.1)

for any function πl(wl), where derivatives with respect to τ are evaluated at τ = 0 unless otherwise

indicated. The finite dimensional parameter β∗ still satisfies the first-order condition in (5) in

Hahn et al. (2023). Using similar calculation as in (A.12), (A.15), (A.16) and (A.17) in the proof

of Theorem 1, we obtain
∂E [J(Z, β∗, π∗,τ )]

∂τ
=
∂E [D(Z, π∗,τ )]

∂τ
, (B.2)

where π∗,τ ≡ (π∗,1,τ , . . . , π∗,L,τ )> and

D(Z, πτ ) ≡
[
(ψλ,β (Z)− g∗ (v)ψλ,λ (Z))

∂λ∗(v)

∂v
− ψλ (Z)

∂g∗(v)

∂v

] L∑
l=1

∂v(π∗)

∂πl
πl,τ (Wl),

which is linear in πτ . Note that by (11), (12) and (17) of Hahn et al. (2023), D(Z, πτ ) thus defined

satisfies

E [Dτ (Z, π)] = E
[
δπ(W )>πτ (W )

]
(B.3)

for any πτ (W ) by the law of iterated expectation. Combining (B.2) and (B.3), we deduce that

∂E [J(Z, β∗, π∗,τ )]

∂τ
=
∂E [D(Z, π∗,τ )]

∂τ
= E

[
δπ(W )>

∂π∗,τ (W )

∂τ

]
=

L∑
l=1

E
[
δl,π(Wl)

∂π∗,l,τ (Wl)

∂τ

]

=
L∑
l=1

∂

∂τ
Eτ
[
−

µl(Zl, π∗,l)

E [µl,π(Zl, π∗,l)|Wl]
δl,π(Wl)

]
=

∂

∂τ
Eτ
[
δπ(W )>ϕπ(Z)

]
, (B.4)

where the third equality follows from (B.1) by replacing πl(Wl) with δl,π(Wl)/E [µl,π(Zl, π∗,l)|Wl]

for l = 1, . . . , L. Therefore, (3.9) in Newey (1994) follows from (B.4) and Theorem 2 is directly

implied by Theorem 2.1 of Newey (1994).

C Three Examples

In this section, we provide three examples where the control variable approach is applied to identify

and to estimate the parameters of interest. The main theory established in Sections 2 and 3 of

Hahn et al. (2023) can be used to derive the influence functions of the semiparametric two-step

estimators in these examples.
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Example 1 (Mean Regression). Consider the following nonlinear regression model

Y = m(X,W0, β∗) + u, (C.1)

X = ϕ(W,π∗) + v, E [v|W ] = 0, (C.2)

where Y is the dependent variable, X is an endogenous regressor and W0 is a vector of exogenous

regressors, u and v are the unobservable residuals, m(x,w0, β) and ϕ(w, π) are smooth functions

and known up to β and π respectively, W ≡ (W>0 ,W
>
1 )> and W1 is a vector of excluded variables.

To achieve identification of β∗, we assume that v is the control variable such that

E [u|X,W0, v] = E [u| v] . (C.3)

The above condition is imposed on the control variable v = X − ϕ(W,π∗) which is an “index”

function of X and W . Let λ∗(v) ≡ E [u| v] and ε ≡ u− λ∗(v). Then we can write (C.1) as

Y = m(X,W0, β∗) + λ∗(v) + ε. (C.4)

By the definition of λ∗(v) and the restriction in (C.3)

E [ε|X,W0, v] = 0, (C.5)

which implies that the finite dimensional parameter β∗ is identified together with the unknown

function λ∗(v) as the minimizer of the following problem

min
β,λ

E
[
2−1 |Y −m(X,W0, β)− λ(v)|2

]
. (C.6)

To construct feasible estimators of unknown parameters β∗ and λ∗ based on (C.6), we assume

that there exists a first-step estimator π̂ of π∗ such that v is estimated by v̂ ≡ X − ϕ(W, π̂). For

example, the first step could be a non-linear regression of the reduced form (C.2), if π is a finite

dimensional parameter. In this case, π̂ is the non-linear regression estimator, and v̂ is the fitted

residual. The first step could also be a nonparametric regression of the reduced form

X = π∗(W ) + v, where E [v|W ] = 0. (C.7)

In this case, we have v(X,W, π) ≡ X − π(W ), π̂ is the nonparametric regression estimator of X

on W , and v̂ is the fitted residual from the nonparametric estimation. Given a random sample{
(Yi, Xi,W

>
i )>

}n
i=1

and the estimate v̂i from the first step, β∗ and λ∗(v) can be estimated by

many popular semi/nonparametric methods. For example, one may approximate λ∗(·) by kn

approximating functions Pkn(·) ≡ (p1(·), . . . , pkn(·))> and estimate β∗ along with λ∗ through the

semiparametric series regression

(β̂>, γ̂>)> ≡ arg min
β∈Rdβ ,γ∈Rkn

n∑
i=1

2−1
∣∣∣Yi −m(Xi,W0,i, β)− Pkn(v̂i)

>γ
∣∣∣2 . (C.8)
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The main results established in the paper can be applied to derive the influence function of β̂ based

on the series method, as well as other nonparametric (e.g., kernel) methods.

This example nests the model studied in Li and Wooldridge (2002), where the control variable

vi is parametrically specified. Moreover, the identification condition (C.3) is different from the

condition

E [u|X,W ] = E [u| v] , (C.9)

which implies that

E [ε|X,W ] = 0. (C.10)

Li and Wooldridge (2002) derive the root-n asymptotic normality of the two-step estimator under

(C.10). As we shall see in Section D, the influence function and the asymptotic variance of the

two-step estimator β̂ are different under the different identification condition in (C.3). �

Example 2 (Quantile Regression). Suppose that we are interested in estimating the quantile

structural effect of a set of explanatory variables on a dependent variable Y through the following

model

Y = Xβ1,α,∗ +W>0 β2,α,∗ + u, (C.11)

X = ϕ(W,πα̃,∗) + v, Qα̃v|W (w) = 0, (C.12)

where X is a continuously distributed endogenous variable, W0 is a vector of exogenous variables,

u and v are the unobservable error terms, βα,∗ ≡ (β1,α,∗, β
>
2,α,∗)

> are the unknown parameters for

some α ∈ (0, 1), ϕ(w, π) is known up to π, πα̃,∗ is an unknown parameter for some α̃ ∈ (0, 1),

W ≡ (W>0 ,W
>
1 )> and W1 is a vector of excluded variables, Qα̃v|W (·) denotes the conditional α̃-

quantile function of v given W . Due to the endogeneity of X, the quantile regression of Y on X

and W0 may inconsistently estimate βα,∗.

To address the endogeneity issue, we assume that v is the control variable such that

Qαu|X,W0,v
(x,w0, v) = Qαu|v(v), (C.13)

where Qαu|X,W0,v
(·) and Qαu|v(·) denote the conditional α-quantile functions of u given (X,W>0 , v)>

and of u given v, respectively. Let λα,∗(v) ≡ Qαu|v(v) and ε ≡ u − λα,∗(v). Then we can write

(C.11) as

Y = Xβ1,α,∗ +W>0 β2,α,∗ + λα,∗(v) + ε. (C.14)

By the definition of λα,∗(v) and the restriction in (C.13),

Qαε|X,W0,v
(x,w0, v) = Qαu|X,W0,v

(x,w0, v)− λα,∗(v) = 0, (C.15)
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where Qαε|X,W0,v
(x,w0, v) denotes the conditional α-quantile function of ε given (X,W>0 , v)>. In

view of (C.14) and (C.15), the finite dimensional parameter βα,∗ is identified together with the

unknown function λα,∗(v) as the minimizer of the following problem

min
β1,β2,λ

E
[
ρα(Y −Xβ1 −W>0 β2 − λ(v))

]
, (C.16)

where ρα(ε) ≡ (α− 1{ε ≤ 0})ε for any ε ∈ R denotes the check function.

Estimation of βα,∗ and λα,∗(v) based on (C.16) is not feasible since v = X−ϕ(W,πα̃,∗) depends

on the unknown πα̃,∗. We assume that there exists a preliminary estimator π̂ of πα̃,∗. For example,

Lee (2007) considers ϕ(W,πα̃,∗) = W>πα̃,∗ where πα̃,∗ is a finite dimensional parameter. Under

this parametric specification, one can estimate πα̃,∗ through the quantile regression of X on W

and estimate v = X −W>πα̃,∗ using the fitted residual. One may also consider a nonparametric

specification

X = πα̃,∗(W ) + v, where Qα̃v|W (w) = 0 (C.17)

and estimate the conditional quantile function πα̃,∗(W ) nonparametrically. Given a random sample{
(Yi, Xi,W

>
i )>

}n
i=1

and the estimate v̂i from the first step, βα,∗ and λα,∗(v) can be estimated, for

example, by the semiparametric series quantile regression

(β̂>α , γ̂
>
α )> ≡ arg min

β∈Rdβ ,γ∈Rkn

n∑
i=1

ρα(Yi − (Xi,W
>
0,i)β − Pkn(v̂i)

>γ), (C.18)

where Pkn(·) ≡ (p1(·), . . . , pkn(·))> denotes the vector of kn approximating functions. The main

results established in the next two sections can be applied to derive the influence function of β̂α

based on the above series method as well as other nonparametric (e.g., kernel) method.

It is worth noting that the identification condition (C.13) is imposed directly on the control

variable v(X,W, πα̃,∗) which is a function of X and W . Therefore, (C.13) is different from, but

implied by the following condition

Qαu|X,W (x,w) = Qαu|v(v), (C.19)

where Qαu|X,W (x,w) denotes the conditional α-quantile function of u given (X,W>)>, which is

commonly maintained in the literature (see, e.g., Lee (2007)). As we shall see in the next section,

the influence function of the estimator of βα,∗ under (C.13) is different from that under (C.19). �

Example 3 (Sample Selection Model). Consider the sample selection model

Y ∗ = m(X,β∗) + u,

v(X,W, π∗) ≡ E [d|X,W ] , (C.20)

where d ∈ {0, 1} is the indicator of selection, Y ∗ is the dependent variable which is observed only

when d = 1, X is a vector of regressors, u is the unobservable residual term, W is a vector of
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explanatory variables and v(X,W, π) denotes the conditional selection probability function known

up to π. The function m(x, β) is known up to β and β∗ denotes the unknown parameter of interest.

To achieve identification, we assume that

E[u|X, v, d = 1] = E[u|v, d = 1], (C.21)

where v ≡ v(X,W, π∗). A basic implication of model (C.20) and condition (C.21) is that

E[Y ∗|X, v, d = 1] = m(X,β∗) + λ∗(v), where λ∗(v) = E[u|v, d = 1]. (C.22)

In (C.22), λ∗(v) stands for the sample selection bias which takes different forms under different

modeling assumptions. For example, Heckman (1976) assumes that the error terms in the outcome

equation and the selection equation are jointly normally distributed. In this case, λ∗(v) is the

inverse of Mill’s ratio. Newey (2009) relaxes the parametric assumption on the joint distribution

of the error terms and models λ∗(v) nonparametrically.

Let ε ≡ u− λ∗(v). Then the structural equation in (C.20) can be written as

Y ∗ = m(X,β∗) + λ∗(v) + ε (C.23)

where E[ε|X, v, d = 1] = 0 by (C.21), which implies that the finite dimensional parameter β∗ is

identified together with the unknown function λ∗ as the minimizer of the following problem

min
β,λ

E
[
2−1d |Y −m(X,β)− λ(v)|2

]
(C.24)

where Y ≡ dY ∗.
To construct feasible estimators of β∗ and λ∗(v) based on (C.24), we assume that there exists

a first-step estimator π̂ of π∗ such that v is estimated by v̂ ≡ v(X,W, π̂). Given a random sample

{(Yi, di, X>i ,W>i )>}ni=1 and the estimate v̂i from the first step, β∗ and λ∗(v) can be estimated, for

example by the semiparametric series regression

(β̂>, γ̂>)> ≡ arg min
β∈Rdβ ,γ∈Rkn

n∑
i=1

2−1di

∣∣∣Yi −m(Xi, β)− Pkn(v̂i)
>γ
∣∣∣2 (C.25)

where Pkn(·) ≡ (p1(·), . . . , pkn(·))> denotes the vector of kn approximating functions. The main

results established in the paper can be applied to derive the influence function of β̂ based on the

above series method, or other nonparametric (e.g., kernel) methods.

In the literature, the function m(x, β∗) is usually assumed to be linear, i.e., m(x, β∗) ≡ x>β∗

(see, e.g., Heckman (1976) and Newey (2009)), and π∗ is a finite dimensional parameter which is

estimated by parametric methods such as Probit (see, e.g., Heckman (1976)) or semiparametric

methods (see, e.g., Powell et al. (1989), Ichimura (1993), and Cavanagh and Sherman (1998)).

The theory established in this paper allows for parametric, semiparametric and nonparametric
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first-step estimation of π∗, and it can be applied to derive the influence function of β̂ under the

index restriction (C.21) which is implied by the condition

E[u|X,W, d = 1] = E[u|v, d = 1], (C.26)

employed in the literature such as Newey (2009).1

D The Influence Function in the Three Examples

In this section, we provide the influence functions of the two-step estimators discussed in the three

examples of Section C. In view of Theorem 1 and Theorem 2 in Hahn et al. (2023), it is sufficient

to calculate the quantities ϕβ(Z), ϕπ(Z), δπ(W ), Ψβ,π and Ψβ,β in these examples.

Example 1 (Mean Regression Continued). For ease of notation, we let Z0 ≡ (X,W>0 )>. In

this example, we have

ψ (Z, β, λ(v(π))) = 2−1 (Y −m(Z0, β)− λ(v(π)))2 . (D.1)

Using the above expression, it is easy to calculate that

ψλ (Z, β, λ (v (π))) = −(Y −m(Z0, β)− λ (v (π))), (D.2)

ψβ (Z, β, λ (v (π))) = − (Y −m(Z0, β)− λ (v (π)))mβ(Z0, β), (D.3)

ψλ,β (Z, β, λ (v (π))) = mβ(Z0, β) = ψβ,λ (Z, β, λ (v (π))) , (D.4)

ψβ,β (Z, β, λ (v (π))) = mβ(Z0, β)mβ(Z0, β)> − (Y −m(Z0, β)− λ (v (π)))mβ,β(Z0, β), (D.5)

ψλ,λ (Z, β, λ (v (π))) = 1, (D.6)

for any function λ (v (π)) of v (π), where

mβ(Z0, β) ≡ ∂m(Z0, β)

∂β
and mβ,β(Z0, β) ≡ ∂2m(Z0, β)

∂β∂β>
. (D.7)

By (D.2), the first-order condition of the profiled nonparametric function h (v (π) ;β, π) can be

written as

E [(Y −m(Z0, β)− h (v (π) ;β, π))λ (v (π))] = 0

for any function λ (v (π)) of v (π) and any β, which immediately implies that in this example

h (v (π) ;β, π) = E [Y −m(Z0, β)| v (π)] , (D.8)

1A similar condition is employed in Ahn and Powell (1993) (see, their condition (2.3)). The model studied here

does not strictly nest that in Ahn and Powell (1993), since they also allow X to be endogenous. On the other hand,

the influence function derived in this paper applies to Ahn and Powell (1993) when X is exogenous.
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and therefore

h (v (π∗) ;β∗, π∗) = E [u| v] = λ∗(v). (D.9)

Let mβ(Z0) ≡ mβ(Z0, β∗). Using the expressions in (D.2)-(D.6) and (D.9), we get

ϕβ(Z) = −ε(mβ(Z0)− E [mβ(Z0)|v]), (D.10)

δβ(Z) = (mβ(Z0)− E [mβ(Z0)| v])
∂E [u|v]

∂v
, (D.11)

δg(Z) = −ε
∂E [mβ(Z0)| v]

∂v
and (D.12)

Ψβ,π = E
[(

(mβ(Z0)− E [mβ(Z0)| v])
∂E [u|v]

∂v
+ ε

∂E [mβ(Z0)| v]

∂v

)
∂v (π∗)

∂π>

]
(D.13)

when π∗ is a finite-dimensional parameter vector. From (C.5), (D.2)-(D.6), the Hessian matrix

takes the following form

Ψβ,β = −E
[
mβ(Z0)mβ(Z0)

> − E [mβ(Z0)| v]E [mβ(Z0)| v]>
]
. (D.14)

From the components in (D.10), (D.13) and (D.14), the influence function of β̂, when the influence

function of the estimator π̂ of π∗ is ϕπ(Z), can be readily computed using Theorem 1 in Hahn

et al. (2023).

When the control variable v (π∗) is nonparametrically specified as the residual in the reduced

form, i.e.,

v (π∗) = X − π∗(W ),

where π∗(W ) ≡ E [X|W ], the general residual function is µ(Z, π∗) = X − π∗(W ). In this case, it

is easy to calculate that

ϕπ(Z) = X − π∗(W ) (D.15)

and

δπ(W ) = −E [δβ(Z)− δg(Z)|W ] , (D.16)

where δβ(Z) and δg(Z) are defined in (D.11) and (D.12) respectively. Using the components in

(D.10), (D.14), (D.15) and (D.16), Theorem 2 of Hahn et al. (2023) implies that the influence

function of the two-step estimator β̂ is

Ψ−1β,β (ϕβ(Z) + δπ(W )(X − π∗(W ))) .

If condition (C.9) holds, we obtain

Ψβ,π = E
[
(mβ(Z0)− E [mβ(Z0)| v])

∂E [u|v]

∂v

∂v (π∗)

∂π>

]
(D.17)

in the case with a parametric first step, and

δπ(W ) = −E
[

(mβ(Z0)− E [mβ(Z0)| v])
∂E [u|v]

∂v

∣∣∣∣W] (D.18)
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in the case with a nonparametric first step. Therefore, the influence function of β̂ is slightly

simplified in both cases. Li and Wooldridge (2002) impose (C.9) and assume that m(Z0, β) = W>0 β

and v (π∗) = X −W>π∗ to derive the main results. Under these extra conditions,

ϕβ(Z) = −ε (W0 − E [W0| v]) , (D.19)

Ψβ,π = −E
[
(W0 − E [W0| v])

∂E [u|v]

∂v
W>

]
, (D.20)

Ψβ,β = −E
[
W0W

>
0 − E [W0| v]E [W0| v]>

]
. (D.21)

The influence function of the two-step estimator β̂ can be calculated using Theorem 1 of Hahn

et al. (2023), the items in (D.19)-(D.21) and the influence function ϕπ(Z) from the first-step esti-

mation of π∗. In this case, the influence function implies the same asymptotic variance-covariance

matrix of the trimming-based estimator proposed in Li and Wooldridge (2002) as indicated in their

Conjecture 2.1. �

Example 2 (Quantile Regression Continued). For ease of notation, we suppress the depen-

dence of β and λ on α, and of π on α̃. Let Z0 ≡ (X,W>0 )> and β ≡ (β1, β
>
2 )>. In this example,

we have

ψ (Z, β, λ(v(π))) = ρα(Y − Z>0 β − λ(v)). (D.22)

Using the above expression, it is easy to calculate that

∂E
[
ρα(Y − Z>0 β − λ (v (π))− τλ1 (v (π)))

]
∂τ

∣∣∣∣∣
τ=0

= E
[(

1
{
Y ≤ Z>0 β + λ (v (π))

}
− α

)
λ1 (v (π))

]
(D.23)

for any functions λ (v (π)) and λ1 (v (π)) of v (π), which implies that

ψλ (Z, β, λ (v (π))) = 1
{
Y ≤ Z>0 β + λ (v (π))

}
− α. (D.24)

Applying the above expression to the first-order condition (3) in Hahn et al. (2023), we see that

h (v (π) ;β, π) is the conditional α-quantile function of Y − Z>0 β given v (π), and therefore2

h (v (π∗) ;β∗, π∗) = Qαu|v (v) = λ∗(v). (D.25)

Let fε(·|Z0, v (π)) denote the conditional density function of ε given (Z>0 , v (π))>. By (D.22), it is

2To make the notation consistent to Thereom 1, we suppress the dependence of β∗ and λ∗(v) on α.
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easy to calculate that

ψβ (Z, β, λ (v (π))) =
(

1
{
Y ≤ Z>0 β + λ (v (π))

}
− α

)
Z0, (D.26)

ψλ,β (Z, β, λ (v (π))) = fε

(
Z>0 (β − β∗) + λ (v (π))− λ∗(v)

∣∣∣Z0, v (π)
)
Z0, (D.27)

ψβ,β (Z, β, λ (v (π))) = fε

(
Z>0 (β − β∗) + λ (v (π))− λ∗(v)

∣∣∣Z0, v (π)
)
Z0Z

>
0 , (D.28)

ψλ,λ (Z, β, λ (v (π))) = fε

(
Z>0 (β − β∗) + λ (v (π))− λ∗(v)

∣∣∣Z0, v (π)
)
, (D.29)

and ψβ,λ (Z, β, λ (v (π))) = ψλ,β (Z, β, λ (v (π))) for any function λ (v (π)) of v (π).

Using (D.24)-(D.29), we get

ϕβ(Z) = (1 {ε ≤ 0} − α) (Z0 − g∗(v)) , (D.30)

δβ(Z) = fε (0|Z0, v) (Z0 − g∗(v))
∂Qαu|v (v)

∂v
, (D.31)

δg(Z) = (1 {ε ≤ 0} − α)
∂g∗ (v)

∂v
, and (D.32)

Ψβ,π = E

[(
fε (0|Z0, v) (Z0 − g∗(v))

∂Qαu|v (v)

∂v
− (1 {ε ≤ 0} − α)

∂g∗ (v)

∂v

)
∂v (π∗)

∂π>

]
(D.33)

when π∗ is a finite-dimensional parameter vector, where

g∗ (v) =
E [fε (0|Z0, v)Z0| v]

E [fε (0|Z0, v)| v]
.

From (D.25)-(D.29), the Hessian matrix takes the following form

Ψβ,β = −E
[
fε (0|Z0, v)

(
Z0Z

>
0 − g∗(v)g∗(v)>

)]
. (D.34)

Using the components in (D.30), (D.33) and (D.34), the influence function of β̂, when the influence

function of the estimator π̂ of π∗ is ϕπ(Z), can be readily computed using Theorem 1 in Hahn

et al. (2023).

When the control variable v (π∗) is nonparametrically specified as the residual from the reduced

form, i.e.,

v (π∗) = X − π∗(W ),

where π∗(w) = Qα̃X|W (w) denotes the conditional α̃-quantile function of X given W for some

α̃ ∈ (0, 1), the first-stage residual function becomes

µ(Z, π∗) = 1 {X ≤ π∗(W )} − α̃.

Therefore in this case,

ϕπ(Z) = −1 {X ≤ π∗(W )} − α̃
fX|W (π∗(W ))

, (D.35)
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where fX|W (·) denotes the conditional density of X given W , and

δπ(W ) = −E [δβ(Z)− δg(Z)|W ] , (D.36)

where δβ(Z) and δg(Z) are defined in (D.31) and (D.32) respectively. Using the components in

(D.30), (D.34), (D.35) and (D.36), Theorem 2 of Hahn et al. (2023) implies that the influence

function of the two-step estimator in this case is

Ψ−1β,β

(
ϕβ(Z)− δπ(W )

1 {Xi ≤ π∗(W )} − α̃
fX|W (π∗(W ))

)
. (D.37)

If condition (C.19) holds, we get

Ψβ,π = E

[
fε (0|Z0, v) (Z0 − g∗(v))

∂Qαu|v (v)

∂v
W>

]
(D.38)

in the case with the parametric first step v(π∗) = X −W>π∗, and

δπ(W ) = −E

[
fε (0|Z0, v) (Z0 − g∗(v))

∂Qαu|v (v)

∂v

∣∣∣∣∣W
]

(D.39)

in the case with a nonparametric first step. Therefore the influence function of β̂ is slightly

simplified in both cases. Moreover, under (C.12) and (C.19), the asymptotic variance of β̂ implied

by its influence function (which can be calculated using (D.30), (D.34) and (D.38)) is similar to

the one stated in Theorem 3.1 in Lee (2007). �

Example 3 (Sample Selection Model Continued). In this example, we have

ψ (Z, β, λ(v(π))) = 2−1d (Y −m(X,β)− λ(v(π)))2 . (D.40)

It is easy to calculate that

ψλ (Z, β, λ(v(π))) = −d (Y −m(X,β)− λ(v(π))) , (D.41)

ψβ (Z, β, λ(v(π))) = −d (Y −m(X,β)− λ(v(π)))mβ(X,β), (D.42)

ψβ,β (Z, β, λ(v(π))) = dmβ(X,β)mβ(X,β)> − d (Y −m(X,β)− λ(v(π)))mβ,β(X,β), (D.43)

ψλ,β (Z, β, λ(v(π))) = dmβ(X,β) = ψβ,λ (Z, β, λ(v(π))) , and (D.44)

ψλ,λ (Z, β, λ(v(π))) = d, (D.45)

for any function λ(v(π)) of v(π), where

mβ(X,β) ≡ ∂m(X,β)

∂β
and mβ,β(X,β) ≡ ∂2m(X,β)

∂β∂β>
.
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By (D.41), the first-order condition of the profiled nonparametric function h(v(π);β, π) can be

written as

E [d (Y −m(X,β)− h(v(π);β, π))λ(v(π))] = 0,

which implies that in this example

h(v(π);β, π) =
E [d (Y −m(X,β))| v(π)]

E [d| v(π)]
= E [Y −m(X,β)| v(π), d = 1] ,

where the second equality is by

E [d (Y −m(X,β))| v(π)] = E [dE [Y −m(X,β)| v(π), d]| v(π)]

= E [Y −m(X,β)| v(π), d = 1]E [d| v(π)] .

Recall that v ≡ v(π∗), therefore

h(v(π∗);β∗, π∗) = E [u| v, d = 1] = λ∗(v)

by the definition of λ∗(v).

Let mβ(X) ≡ mβ(X,β∗). By (7) in Hahn et al. (2023), (D.44) and (D.45), we get

g∗(v) =
E [dmβ(X)|v]

E [d|v]
= E [mβ(X)|v, d = 1] , (D.46)

where the second equality is by

E [dmβ(X)|v] = E [dE [mβ(X)|v, d] |v] = E[mβ(X)|v, d = 1]E [d|v] .

By (7), (9) - (12) in Hahn et al. (2023), and (D.40)-(D.46), we have

ϕβ(Z) = −dε (mβ(X)− E [mβ(X)|v, d = 1]) , (D.47)

δβ(Z) = d [mβ(X)− E [mβ(X)|v, d = 1]]
∂E [u| v, d = 1]

∂v
, (D.48)

δg(Z) = −dε
∂E [mβ(X)|v, d = 1]

∂v
, (D.49)

Ψβ,π = E
[
(δβ(Z)− δg(Z))

∂v (π∗)

∂π>

]
, and (D.50)

Ψβ,β = −E
[
d
(
mβ(X)mβ(X)> − E [mβ(X)|v, d = 1]E [mβ(X)|v, d = 1]>

)]
(D.51)

when π∗ is parametrically specified. Using the components in (D.47), (D.50) and (D.51), the

influence function of β̂ in this example can be readily computed using Theorem 1 of Hahn et al.

(2023).

When π∗ is nonparametrically specified, π∗(X,W ) = E [d|X,W ]. In this case v(X,W, π∗) =

π∗(X,W ) and the general residual function in the first step is

µ(Z, π∗) = d− π∗(X,W ).
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Therefore in this case

ϕπ(Z) = d− π∗(X,W ) (D.52)

and

δπ(W ) ≡ E [δβ(Z)− δg(Z)|X,W ] , (D.53)

where δβ(Z) and δg(Z) are defined in (D.48) and (D.49) respectively. Using the components in

(D.47), (D.51), (D.52) and (D.53), Theorem 2 of Hahn et al. (2023) implies that the influence

function of the two-step estimator in this case is

Ψ−1β,β (ϕβ(Z) + δπ(W )(d− π∗(X,W ))) .

When the identification condition (C.26) holds,

E[ε|X,W, d = 1] = E[u|X,W, d = 1]− λ∗(v) = E[u|v, d = 1]− λ∗(v) = 0,

which immediately implies that

E
[
dε
∂E [mβ(X,β∗)|v, d = 1]

∂v

∂v (π∗)

∂π>

]
= 0 (D.54)

in the parametric case since ∂v (π∗) /∂π
> is a function of (X>,W>)>, and

E
[
dε
∂E [mβ(X)|v, d = 1]

∂v

∣∣∣∣X,W] = 0

in the nonparametric case. Therefore the influence function of β̂ is slightly simplified in both cases.

Moreover, in the parametric case, if one further assumes that m(x, β∗) = x>β∗ and the influence

function from the first-step estimation is ϕπ(Z), the influence function computed using Theorem

1, and the items in (D.47), (D.50), (D.51) and (D.54) becomes identical to that in Newey (2009).

�
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