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Abstract

We develop a Lagrange Multiplier (LM) test of neglected heterogeneity in dyadic
models. The test statistic is derived by modifying Breusch and Pagan (1980)’s test.
We establish the asymptotic distribution of the test statistic under the null using
a novel martingale construction. We also consider the power of the LM test in
generic panel models. Even though the test is motivated by random effects, we show
that it has a power for detecting fixed effects as well. Finally, we examine how
the estimation noise of the maximum likelihood estimator affects the asymptotic
distribution of the test under the null, and show that such a noise may be ignored
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1 Introduction

Econometric analysis of dyadic data can be complicated under the presence of unobserved
individual effects. If such effects are neglected, it would in general lead to inconsistency
of standard estimators such as MLE. This is due to the fact that neglecting unobserved
effects generally leads to model misspecification. It is also partly related to the well-
known incidental parameter problem in panel data analysis. There do exist versions of
dyadic models where standard estimators remain consistent even when unobserved effects
are neglected. However, the presence of unobserved effects in the data affects the rate of
convergence of standard estimators in a negative way, and the rate of convergence may
be slower than what is expected for standard estimators.] As such, standard errors based
on the presumption that the unobserved effects are present are too conservative if the
unobserved effects are in fact absent.

For these reasons, it would be pragmatically useful to examine whether there are any
neglected individual effects in dyadic regression models. This paper makes a contribution
in this regard by developing a convenient statistical test of neglected heterogenous effects
(even after controlling for observed dyadic specific explanatory variables), which is done
by modifying Breusch and Pagan (1980)’s test (BP test hereafter). The BP test is a
Lagrange Multiplier (LM) test originally developed for panel data analysis to deal with
both individual and time effects, but the version of the BP test for detecting only the
individual effects seems to have received the most attention? From the viewpoint of
dyadic regression models, the most convenient feature of the BP test is perhaps that it is
an LM test, and as such, it requires calculation of the parameter estimates only under the
null of no unobserved heterogeneity.E This feature simplifies the computation and makes it
pragmatically very attractive, as the computational problem disappears due to the absence

of unobserved heterogeneity under the null.

'Examples include Graham (2020) and Menzel (2017).
2Such a version of the BP test can be interpreted to be a test of overdispersion Cox (11983), and it

is related to Whitg (1982)’s information matrix test, as was pointed out by Cheshey (1984). See also

Lancastery (1984) for the asymptotic distribution of the test under the null.
3See also Engle (11984).



The LM test in dyadic models turns out to be very similar to the sum of the two BP
test statistics in panel regressions, one for detection of individual effects and the other for
detection of time effects. Therefore, the asymptotic properties of our modified BP test can
be characterized by deriving the joint distribution of the two BP test statistics. Honda
(1985) analyzed the asymptotic size of the two BP test statistics for linear panel regression
models. Therefore, in principle, the asymptotic analysis of our test statistics would simply
require nonlinear generalization of Honda (1985)’s argument. Unfortunately, we found
that some of the arguments in Honda ([1985)’s proof is incorrect. It turns out to be quite
challenging to correct Honda (1985)’s proof. We overcome the problem by approximating
the test statistics with a novel martingale that we construct in the appendix, which we
consider to be one of the main contributions of the paper.

Our endeavor produced a few interesting by-products that are of independent interest in
themselves. In addition to characterizing the asymptotic null distribution of the modified
BP test in both dyadic regressions and panel regressions, we address the question of power
of the BP test in generic panel modelsH To our knowledge, Honda ([1985) is the only one
who analyzed the asymptotic power of the BP test, and he did so against random effects
in linear models.

In this paper, we make significant progress over Honda (1985) in two dimensions. First,
we derive the asymptotic power of the BP test against random effects in general nonlinear
models. Second, which is more important, we also consider the power of the BP test against
the alternative of fized effects. By fixed effects, we mean the type of general unobserved
variables that may have arbitrary dependence structure with the observed explanatory
Variables.E The BP test was specifically designed to detect the alternative of random
effects, as is clear in the derivation by Breusch and Pagan (1980) or Chesher (1984). The
random effects are by assumption independent of all the observable explanatory variables,

so such an alternative may be argued to be restrictived Our paper fills this gap in the

4Throughout this paper, the power is defined to be the local power.
®Chamberlain ([1984) called such a variable the correlated random effects.
6Tf the more general alternative of fixed effects is to be considered, one may adopt a version of the

conditional moment restrictions test, as discussed in Hahn, Moon and Snider (2017). Any test of the



literature and analyzes the local power of the BP test against the general alternative of
fixed effects. Modifying Newey (1985),B we obtain the asymptotic results, based on which
we argue that the BP test in general has a power against the fixed effects B

We also derive the convenient implication that it is unnecessary to adjust for noise
in estimation of MLE in two-way models (for characterization of the asymptotic distri-
bution under the null hypothesis) under the asymptotics where both the cross sectional
dimension (V) and the time series dimension (7") grow to infinity. This has a convenient
implication in the application to dyadic models, but is in contrast to Lancaster ([1984)’s
result, which implies that such an adjustment is necessary. We explain that the difference
can be explained by the fact that Lancaster (1984)’s analysis was on fixed T"and N — oo
asymptotics.

We recognize that a specification test of the type analyzed in the paper is often as-
sociated with the pre-test bias in the usual cross sectional analysis, and we expect the
same issue with uniformity in the application to the dyadic/panel data analysis. This is a
generic problem for which we are unable to offer a general solution. That being said, the
pre-test problem in panel models may be less severe than in cross sectional models, from
a pragmatic perspective.E We also note that the bias correction technique in nonlinear

panel models with two-way fixed effects and dyadic models with fixed effects is not as well

conditional moment restrictions test is equivalent to a test of infinitely many unconditional moments, and
hence, it may not be as appealing as when compared to the simplicity of the BP test, except that the BP

test was motivated to deal with the alternative of random effects.
"The regularity conditions in Newey (1985) make it easy to obtain results along the line of Le Cam’s

Third Lemma.
8To be more precise, we show that the probability of rejection is higher under the alternative than

under the null, i.e., we show that the BP test is locally unbiased.
9Nonlinear panel data analysis is often unable to eliminate the incidental parameters problem and

ends up mitigating (reducing) the bias at best. Therefore, even if a researcher incorrectly accepts the
null of no unobserved heterogeneity and proceeds with a standard estimator, its statistical properties
may not be dominated by the seemingly more robust procedure involving some bias reduction. This is in
contrast with the cross sectional case where the estimators of the (typically more general) model under

the alternative are associated with (asymptotically) unbiased estimation.



developed as in one-way panel models.ld The severity of the pre-test bias is a topic that
we leave as a future research topic.

The paper is organized as follows. Our results for dyadic models are contained in
Section E Section E presents results for local power of the BP test in nonlinear panel
models. Section @ presents an argument for why the asymptotic distribution under the
null does not need to adjust for noise of estimation of MLE. As a by-product of our analysis
of the linear model in Section a, we develop an intuitive LM-like test for detecting further
neglected heterogeneity in the linear model with fixed effects, which is presented in Section

B. Section B concludes.

2 Test of Neglected Heterogeneity in Dyadic Regres-
sion Models

In this section, we formulate the null hypothesis of no neglected heterogeneity in two differ-
ent dyadic regression frameworks for either directed or undirected dyadic observations, and
derive the limiting distributions of the test statistics under the null hypothesis. We also
make a connection to the classical BP test against one-way and two-way error component
panel data models.

Suppose that N := {1, ..., N} is the set of sample agents. A pair of two different agents
constitute a dyad, (i,7) € N x N with i # j. Let (Y;;, X;;) denote dyadic observations.

Undirected Dyadic Regression. Suppose that dyadic observations (Y;;, X;;) are undi-
rected, that is, (Y, Xi;) = (Yji, Xji) for i, j € N with ¢ # j. The random effects likelihood
of typical undirected dyadic regression models has a generic representation,

N-1 N

/“'/HHf(yij|xij700+eiL—i_ejL)k(el)‘”k(eN)del"'deN' (1)

i=1 j>i

10Some exceptions include Ferndndez-Val and Weidner (2016), Dzemski (2019), and [Yan, Jiang, Fien-
berg and Leng| (2019). However, these papers rely on a concavity assumption of the model (e.g., Assump-

tion 4.1.v in Ferndndez-Val and Weidner| (2016)), which limits its applicability.



Here, the f (y;;| zij, 00 + €it + €;¢) denotes the marginal likelihood of y;; given the observed
explanatory variable z;; as well as unobserved heterogenous effects ¢; and ¢;. The ¢ is a
vector of the same dimension as the parameter of interest #,, where the first coordinate
is equal to 1 and the rest are 0. Equation (m) captures the gist of the linear model of the
form Yi; = X[,0p + €; + ;5 + vy (but not limited to the linear model), where we assume
that the first component of X;; is 1 (i.e., the intercept term), and we understand es as
representing the heterogeneity of the first component of §y. (More detailed discussion on
the modeling is presented in the one-way error component model.) The density f(-]-) is
then derived from the density of v;;. Finally, the es are assumed to be independent and
identically distributed with density & (-), which gives rise to the above joint density.
In order to simplify the notation a bit, we rewrite the joint density in (m) as

N-1 N

H Hf(yzj| l’ij,eo + E;il + €jL)

i=1 j>i

E.

Y

where E. [-] denotes the expectation with respect to the es, fixing everything else constant.
The LM test of overdispersion can be understood to be a test against the alternative
where the density k (-) is very close to zero, loosely speaking. This is given a more rigorous

meaning by considering the alternative parameterization indexed by a scale parameter 7,

h<y"r7607 \/ﬁ) = EE

N-1 N
H Hf(yij|xij7‘90 -+ \/ﬁ&L—F \/ﬁé?jb)] s

i=1 j>1
where the density of es is fixed, and we test the null hypothesis that the scale parameter
is zero, i.e.,

Hy :n = 0. (2)
Directed Dyadic Regression If the dyadic observations (Y;;, X;;) are directed so that
(Yij, Xij) # (Y, Xji) for i,j € N with i # j in general, the likelihood of typical directed

dyadic regression models has a generic representation,

N N
/"'/HHf(yij|xij>00+62‘L—|—6jb)><kl(el)"'kl(eN)del...deN

i=1 j#i



N N

HHf(ywl Iij,eo + gl + EjL)

i=1 j#i

= F. ) (3)

where ¢; and ¢; are unobserved effects of “out” agent ¢ and “in” agent j, respectively.

Like in the undirected case, we parameterize the likelihood as

N N
H H [ (il @ij, 0o + /neie + /neje)

i=1 j#i

h(y| x7907 \/ﬁ) = Ea

and test

2.1 LM Test of Neglected Heterogeneity in Directed Dyadic Re-

gression Models
The LM test of the null hypothesis (@) is based on the score function with the parameter
estimate under the null restriction. To derive the LM test statistic in the directed dyadic

regression, first we consider the first order derivative of the likelihood function with respect

to the parameter 7. Define

B(y|xa007\/m7 \/77_2) = EE

N N
LLTTf Coslwis 00 + Vimeae + \/@Sjb)] :

i=1 j#i

Then, by definition, we have

oh (y| I,907 \/ﬁ)
on

_ l_l (y| I,Qo, \/m7 O)

om

aB (yl Z, 907 07 \/77_2)
+
e

(5)

n=0 n1=0 1n2=0
For the derivation of (H), we take a detour and relate the two terms in (B) to the BP

test statistic for overdispersion in one-way error component panel models.

2.1.1 Review of the BP Test in One-Way Error Component Panel Regression
Models

We will consider the panel model with possible unobserved individual heterogeneity and

present the LM test to detect neglected heterogeneity. For a one-way error component



panel model, this is largely a review of Breusch and Pagan (198(0) as well as Chesher
(1984). Assume that we observe a random sample (Y;, X;),i=1,...,N. Y; and X; can be
vectors. In the panel data analysis where each individual is observed over T time periods,
we will have Y; = (Yi1,...,Ysr) and X; = (X/,,..., X/;)'. Note that the first component
of X be 1 (the intercept). We let X7, denotes X;; excluding the intercept and define X}
accordingly. We assume that the conditional density of Y; given Xj is given by the function
f (y|x, @), where 0 is a g-dimensional parameter that characterizes the density. Under the
null hypothesis, the first component 6; of ¢ is fixed at 6y, but under the alternative
hypothesis, it may be a random variable indexed by . This is motivated by the linear

model with one-way error component
}/;t:X;Iﬁ—i—Oéi—i—Uit, izl,...,N, tzl,...,T,

where a; denotes the unobserved individual heterogeneity. Suppose that vy ~ N (0,072) is
independent of (X}, a;), and is independent over i and ¢. We can then understand that
the parameter 0 = (ay, f3, 03), may be different across different individuals. Note that we
assume that only the first component 6; of # is allowed to be different across i, i.e., scalar
random (or fixed) effectsd The heterogeneity of the first component ; of  can be modeled
as 0,1 plus a random variable €;. Under the random effects specification, the heterogeneity
is independent of X, and therefore the conditional density of the heterogeneity given
X, = x is equal to the marginal density. Under the random effects approach, it is also
common to assume that the expectation of the heterogeneity is zero. In order to accentuate
the local nature of the alternative, we may choose to write 6, ; = 0 1 +ne;, where E [;] = 0
and 7 > 0 is a “small” number and the conditional density of ¢; given X; = x; is k(). The
conditional density of Y; given X; = x; and &; = e; is then equal to f (y;| x;, 0y + ne;t) =
[ (yil i, (Boq +mei, Oo2, . .., 00,)). It follows that the conditional density of Y; given X; =
T; is
h(yil @i, 00,m) == Ec [f (il %1, 60 + mear)]

HThere is no reason that the LM test should be confined to the scalar effects, as is evident from

Chesher] (1984)’s derivation. On the other hand, the scalar effects are a common feature in many panel

data analysis, and were the basis of the LM test as was presented in Breusch and Pagan| (1980).

8



where the expectation is taken with respect to the distribution of . Note that h (y;| x;,6,0) =

f (yi| z;,0). We consider the second order Taylor series expansion of h (y;| x;,0,n) with
respect to n around (6,7n) = (6, 0).

Under the assumption that we can exchange differentiation and integration, we obtain

8h (yl| L, 907 /’7)

_ Af (yil @i, 09) 1 Of (yil @i, 09) 1
o . =FE, [ 26, gl = 26, Ele] =0,
0*h (y;| x;,600,m) B P f (il ®i,60) 5| O*f (wil i, 60) 9
e [ - e o

Therefore, we have

282 ) i70
% f (il 1, 00) 2 (772)’

h (yil zi, 00,m) = b (yi| 24, 00,0) + 5 0.+ o0
062

where 02 = E [¢2]. Given the form of the expansion, it would make sense to consider the
parameterization A (yz| x;, 0, \/ﬁ) instead (i.e., F. [f (yz| T, 0o + \/ﬁaiL)} ), which delivers

the expansion@

82 7 xi79
h (yil 25,00, /1) = h (Y] 2, 00,0) + g—f(gOJQ O)Uf +o(n).
1

This implies that

oh (yi’$i790>\/ﬁ)

— Lim h (yi|$i,90,\/ﬁ) - h(yi’l"i,eo,o) _ lagf(yﬂl’i,@o) 2
on

10 n 2 a2 =

(7)

n=0

Now, we consider the joint conditional density of the entire data

N

Hf (yil i, 00 + meit)

=1

h(y|x790777) = E&

I

and consider the form of the LM test statistic. It is straightforward to show that

Oh (y| =, 00,7) 8%h (y| z, 00, ) al 282 f (yi| 1, 60) /063
- e— =0, = i|zj,0 o
87] n=0 8772 n=0 }_Ilf<yj| ! O> ZZI f(yilxi790>

12Chesher| (1984) directly worked with h (y| x, 09, \/77) and applied L’Hopital’s rule. The Taylor expan-

sion adopted here makes it easier to understand the role of the zero mean assumption, i.e., E [g;] = 0.

2
-



Therefore, it follows from a similar Taylor expansion argument that in the random effect

one-way error component panel model (not necessarily linear), the LM test can be based

_ L[N0 (il i, 60) /067
2 (Z S (il i, 00) &

=1

on the score

h (y| 13,907 \/ﬁ) /877
h(y|l’,90,0)

or equivalently based on E

N

2
PInf (Yie| X, 00) 1 29I f (Yie| Xir, 60)
Bl =% TZZ 063 AT\ 2 96 - ®)

=1 t=1 =1 t=1

B P4y is the same as the statistic in () below, and Appendix B gives the justification
of the normalization by v NT'.

2.1.2 Back to the LM Test of Neglected Heterogeneity in Directed Dyadic

Regression Models

We now get back to the derivation of (B),

ah(y]x,(%,\/ﬁ) _ 71(3/|377907\/m70)
on om

n=0

a}_l (y‘ €, 007 OJ \/%)
e

1n1=0 7n2=0

=1+ 11, say.

Notice that the terms I and I correspond to the scores of the one-way error component
panel regression model. Therefore, in view of (B), we deduce that the LM test statistic of

the null hypothesis (@) in the directed dyadic regression model is the sum of

2
— + 9
VNN 2 g " v\ v

and

2
1 021n f (Y| X,1,60) 1 o (=0l f (Vi Xi5,00) |
\/_NZZ e +\/NN;<Z L ) (10)

J=1 i i#j
that is,
LM, := (9) + (D). (11)
2 2
13Because Ethl W + ( thl %&X“’G”)) has a zero expectation under correct spec-
1

ification, the LM statistic in (E) has the information matrix test interpretation. See Chesher (1984).

10



2.1.3 Comparison with the BP test in Two-Way Error Component Panel Re-

gression Models

Notice that the directed dyadic regression model (B) and a two-way error component panel
model are similar. A widely applied two-way error component panel regression model

includes both individual and time effects as
}/;t:X;t/ﬁ_’_ai—'—/yt—f_vit; 7;:1,...7N,t:1,...,T.

Compared to (B), the two-way panel model pairs cross-section indexed by ¢ and time series
indexed by ¢. The dimensions of cross section (V) and time series (7T') are different in
general, and if the panel is balanced, we observe all the pairs (Y, X;;). Similar to the
one-way panel model, we can understand that 6 = (a; + vy, 3,02). The heterogeneity of
the first component ¢, of 6 can then be modeled as 6y, plus a random variable €;; that
differs across i, as well as another random variable ey; that varies over t. If we assume

that the joint conditional density of all Y;; given all X;;, €1, and ey, is

B(y|x,90,n1,772) = .

N T
LTI Coiel i, 60 + merie + 77252tL>] :

i=1 t=1
then we recognize that the BP test statistic can be obtained by separately differentiating
with respect to n; and 7. This implies that the BP test statistic for two-way error

components is a two-dimensional vector, with the first component being BP,,,, defined

in (§)

1 L P g (Yl Xinf) . 1 n (9o f (Vi Xir) )
T N, T VI "

i=1 t=1 i=1 \t=1
and the second component being the counterpart of B P4, when the alternative one-way

model under consideration contains only time effects

T N N 2
1 621nf(Y;t]Xit,00) 1 8lnf(Y;t|Xit,90)
- E § + § E . 13
NVT &= = 00 NVT 90, (1)

t=1 i=1

That is,
B Pyyay = ((I2), (T3))". (14)

11



See Appendix @ for justification of the normalization by v/NT and N+/T. Therefore, our
test statistic LMy for the dyadic model in (@) is almost equal to the sum of the two

components of BPy,,, for the special case N =T

2.1.4 Asymptotic Distribution of the LM test statistic LM, in (@)

In this subsection, we discuss how to establish the asymptotic theory of the LM test
statistic LMy in () Comparing LM, in the directed dyadic regression model and the
sum of the two components of the traditional BP test statistic B Py, in (@) in the two-
way error component panel model, we find that the two are almost equal to each other,
except that LM, only considers the i # j terms (i.e., the ¢ # ¢ terms in the panel model)
with N =T.

The traditional BP test in the two-way error component linear panel regression model
was first proposed by Breusch and Pagan ([1980), and then subsequently Honda ([1985)
derived the asymptotic distribution of the test statistic. Given these existing studies and
the closeness between the two test statistics mentioned above, one may think that the
asymptotic null distribution of the LM test statistic (@) can be easily derived using the
result in Honda (1985)’s. Unfortunately, it is not the case.

The problem with Honda (1985)’s analysis is that in proving the joint asymptotic
distribution of () and (B), or more precisely the counterparts of (@) and () in linear
models, Honda (1985, Lemma 2) asserts that if two uncorrelated sequences of random
variables both converge to normal distributions, then they jointly converge to a bivariate
normal distribution. This argument is incorrect.4 Fortunately, his result can be saved,
although it turned out to be quite challenging. In the rest of this subsection, we will
present a correct argument for the asymptotic independence by using a novel martingale
construction and applying a martingale central limit theorem.

To make the discussion above concrete, it is convenient to rewrite the statistic in (@)

14Gee Kuersteiner and Prucha (2013)’s Example 1 for related discussion.

12



as

1 O2In f (Yi| Xiv,60) [ 01n f (Yie| Xir, 60)\
NT Z (Z ( 067 i ( 96, ) ))

=1 t=1
N T
1 Ol f (Yie| Xit, 00) 0In f (Vis| Xis, 00)
T E E ) 15
v NT i=1 t,s=1,t#s (901 891 ( )

Under the null, because

2
821n f(Yie| Xs¢,0 Aln f(Yie| Xs¢,0 .. . .
nf(aeé‘ vho) 4 ( nf( 691 t °)> is independent over ¢ and ¢ with
1

mean zero, the first term in () has mean zero and variance of order ﬁO (NT) =
O (T™1). Therefore, the statistic in () is asymptotically equivalent to the second term
ﬁ SN ZZ:S:L#S Oln J(¥it] Xir.B0) Oln f(Vis | XisiBo) ) (@) under the null. Likewise, the statis-

20, 901
.. ) ) . T N On (Y| Xir,00) OIn f(Yie| X 1,0
tic in () is asymptotically equivalent to WT Doim1 Dl is nf( 851 160) 9ln /( é‘,’(i it-bo)

under the null.

For simplicity of notation, let U;; denote %ﬂx’”’eo) fori=1,..., Nandt=1,...,T.
So, our objective is to analyze the joint asymptotic distribution of ﬁ Efil ZZ:S:M 4s U, U,
and WT Zgj:l’i# S 7 UyUj;. Honda (1985) argued that these two statistics are uncor-
related, and drew the conclusion that they are asymptotically independent, which is the
mistake that we will fix by constructing a novel martingale structure.d

We use the Cramér-Wold theorem and define

;NI 1 N T
Ant = Qm ; ts;’t#s UitUss + N—\/N i’j;’i# ; UitUjy. (16)

Without loss of generality, we will assume that |o| < co. The |g| = oo case is where we
are only interested in the marginal distribution of ﬁ ZZNZI ZtT s=1tdks U;;U;s, which can

be established using symmetry by considering the o =0 Cause.E

Lemma 1 Suppose that Uy are iid with variance o and a finite fourth moment across

1,t. Suppose that N, T — oo with % — Kk and 0 < Kk < co. We then have

1 Q2 4
ANTﬁN 0,2 _+_2 oy |-
K K

15The construction is technical in nature, and can be found in Appendix @

6The two cases p = 0 and |g| = oo correspond to the first half of Lemma 2 in Honda (1985), which

was correctly proven.

13



Proof. In Appendix @ |

Lemma 2 Suppose that Uy are iid with variance o and a finite fourth moment across

1,t. Suppose that N, T — oo with % — Kk and 0 < kK < co. We then have

N T
Ni/T Ei,j:u;ej > i1 UUje LN 0 204, 0
ﬁ Zf\il ZZS:L#S UiUis 0 0 20f

Proof. In Appendix @ ]

Comparison between the two statistics in Lemma E (for the directed dyadic model if
N = T) and the two statistics in () and () for the panel model suggests that the
only difference between them is that the test statistics for the directed dyadic model only
considers the i # j terms (i.e., the ¢ # t terms in the panel model). It turns out to be
the case that the deletion of the (i,4) observations has an asymptotically negligible effect.
This is formally summarized in the following theorem, which is our main result for the

directed dyadic model.

Theorem 1 Suppose that U;; are iid with variance o, and a finite fourth moment across
1,7. We then have
LMy = N (0,407) .

Proof. In Appendix @ ]

Remark 1 The analysis in Section | implies that the result in Theorem B carries over
to the feasible version of LMy where 0y is estimated. To be more precise, let 6% and Oy
denote a consistent estimator of o and the MLE of 0y, then we have (lN(th))2 J46¢ = X3

under the null hypothesis of no unobserved heterogeneity, where

thlf Y;,]| 7R ) 1 al 81nf(Y;]| 59 ) 2
hn(On) : \/_N ZZ 962 + VNN Z (Z 06, ’

i=1 j#i =1 VED
2
_ 1 N 921 f (Y| Xij,0n) 1 (L aln f (V] Xy, 0n)
lon(On) i= ——

and lN(éN) = llN(éN) + lQN(gN).

14



2.2 LM Test of Neglected Heterogeneity in Undirected Dyadic

Regression Models

For undirected dyadic regression, Y;; = Yj; and X;; = Xj;, and we can write the joint

conditional density of all Yj; given all X;; and ¢; as

B(y|x,90,\/ﬂ,...,wm\7) = L.

N—1 N
H H F (yijl @iz, 00 + /micie + \/W_jgjb)] :

i=1 j>i
Similar to the derivation of (B) and (@), we recognize that the LM test statistic can be
obtained by taking separate first order differentiation with respect to 7, ...ny and then

adding them together. In particular, we see that our LM test statistic would be

2
. 0 In f (Y| Xy, 6o) Y 9ln f Yy X, 60)
LM, = \/_Z Z 50 + (Z 5 > . (17

i i !

which is almost identical to the BP test statistic in the one-way error component panel
model, as shown in (B), except that we are using j instead of ¢t and excluding the terms
where 7 = j. Because Y;; = Yj;, the martingale needs to be constructed more carefully.
For this purpose, we rewrite the statistic in () as

anf j’Xijaeo) alnf(Y;j|Xija90) ?

=1 j>1
Z Z@lnf j|X,-j,90) ( i 8lnf(YZ~j/|Xij/,00)>>
\/_ <j 96, 14,5 96,
The first term on the right is a sum of N (N — 1) /2 iid random variables with zero mean

2
under the null, so its variance is of order (ﬁ) O(N (N —1)) = o(1). Therefore, the

test statistic is asymptotically equivalent to the second term under the null; that is

1 Oln f (Y Xij.00) ([ = Olnf (Yiy| Xigr, 00)
LM, = N\/N (Z 8é1 J (Z (;91 J >)+op(1).

§#g
(18)

We let U;; = %ﬂxij’%) as before if © # j, and define U;; = 0 if i = j. We then write

the main term in (@) as
N N

1
N N\/N Z Z Uz]Uz] )

=1 j,j'=1,j#5"
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so it superficially resembles An7, the term that we analyzed in Lemma m, except that

Ui; = Uj; in the current setup.

Lemma 3 Suppose U;; are iid with variance of and a finite fourth moment across i, j
(i # j). We then have
Ay = N (0,207) .

Proof. In Appendix @ ]
Then, from (), we have the following theorem.

Theorem 2 Suppose Uy are iid with variance o3, and a finite fourth moment across i, j
(i # j). We then have
LM, = N (0,204) .

3 Power of the BP Test

We now analyze the power aspect of the LM test. Given that the LM test statistic in
dyadic models is asymptotically equivalent to the sum of two components (@) and () of
the traditional BP test statistic in panel models with two-way error components and that
(@) equals BPjy,, defined in (E), it suffices to consider the power properties of BPyqy,
the BP test statistic in panel models with one-way error components. So, in this section,
we focus on the analysis of the power of the BP test in generic one-way error component
panel models. In order to understand the power properties better, we adopt the fixed
T approach. After all, with large T', the power cannot decrease. We consider two kinds
of alternatives. First, we consider the random effects, where the individual effects are
assumed to be independent of the explanatory variable X. The derivation in (E) shows
that the LM test was motivated by the random effects assumption, since the density of ¢
there does not depend on X. Second, we consider the fixed effects, where the conditional
distribution of the individual effects on the explanatory variable X may depend on the

realization of X. If we allow arbitrary conditional density k(-|z) of ¢; given X; = z;,

16



which is appropriate under the fixed effects specification, we would change the derivation

(1) to

oh (Z/z| xi, 0o, 77)
on

_ Of (yil @i, 00)
- 801 ILL (xz) 9

where we define p (z) := E[g;| X; = x]. Because one can consider arbitrary specification
of p(x), the score test that is against all possible specifications of the fixed effects would

test whether the equality

5 {af (Y;] Xi,60)/ 06

T X6y M =0 (19)

holds for all p (XZ)E Because the score test is equivalent to an infinite number of uncon-
ditional moment restrictions (), a practitioner needs to confront the resultant statistical
complications. Our objective is not to develop different tests for different alternatives.
Rather, we would like to examine the power properties of the BP test against general
alternatives including fixed effects, even though BP,q, in (B) was initially developed to
detect the random effects. This is a pragmatically interesting question because the BP test
is relatively simple to implement; it is an LM test, and therefore, it suffices to estimate the
parameters under the null hypothesis of no neglected heterogeneity, which may be very
convenient computationally. Therefore, one may ask the question of whether the BP test
can actually detect the fixed effects, even though the fixed effects were not the initial tar-
get. Although some power may be sacrificed relative to a test of the conditional moment
restrictions (@), perhaps such a cost may be justified from the pragmatic perspective of
avoiding a potentially complicated statistical procedure. We are not aware of any paper

in the literature that posed such a question, which this section proposes to tackle.

1"This prompted Hahn, Moon and Snider (2017) to conclude that any test of the conditional moment

restriction

£ [ of (Yil X;,00)/ 00,
f(Yi| Xi, 00)

can be a possible test of fixed effects. See Section E for other variants of this idea for linear models.

X,] —0 (20)
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3.1 Power of the BP Test Against Random Effects

We begin with the random effects. Even though it seems to be such an elementary question,
we have not found a literature that deals with the power of the BP test in general nonlinear
models, an obvious gap in the literature if our library research is correct. Using (B), we
can see that our BP statistic can be written as my (éN), where

N

my (0) = N> m(Z,0), m(z0):=

=1

O f (ylx,0)/ 067
f(ylz,0)

(21)

z denotes the observed data vector, and Ay denotes the MLE of # under the null hypoth-
esis of no unobserved heterogeneity. The local power can be analyzed by deriving the
asymptotic distribution under the appropriate sequence of DGP’s under the alternative of
random effects. Newey| (1985)’s analysis is almost tailor-made for our purpose, which we
adopt as the main tool of analysis.@ Minor differences do exist. For example, the discus-
sion in the previous section suggests that the local power analysis should be conducted
by examining the N/4 = v/N/2-neighborhood, i.e., by examining the local alternatives
of the form 6,; = 6y, + N~V 451-.@ As a result, we will consider the local alternatives of
random effects where (i) 6,; = 01 + N~'/%¢;, (ii) &; is independent of X;; (iii) E[g;] = 0
and F [¢2] = o2.

Next theorem gives the local power property of the BP test against the alternatives of

random effects.

Theorem 3 Under Assumptions B - B detailed in Appendix @, we get
2

\/Nm]v (Q_N) = N (% (Iﬁ — /{’21_1/12) , K1 — I€/2I_11€2> ,

where

of (y|=,0)/ 90
f <y| 513,90)

18Tn this section, we also adopt Newey (11985)’s notation wherever is possible.
YHonda (1985) worked with a case that includes both the individual and time effects, and assumed

s(z,6p) :=

that N, T — oo at the same rate. Because we are working with models without time effects and with fixed

T, it is a little difficult to make a direct comparison.
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= £[s(z00 120 - - [2 28]
_ 0% f (Yi| X;,6)/ 003 \°

S ( 7 (Y X 00) ) ’
[P (Yl X, 60)/ 067

Ro 1= FE |: f(}/;|X“00) S(Zi,60>1 .

Proof. In Appendix @ [ ]
Theorem B implies that (i) we could use a squared standardized BP test statistic

(Vmy (3x))

:‘%1 — f%/QI_I/%Q

, (22)

where A1, /%Q,f are consistent estimators of k1, ko, Z; and (ii) its asymptotic distribution
under 6;; = 01 + N~/4, is a non-central x? distribution with noncentrality parameter
<%§> i (k1 — k5T ko). Note that k; —k5Z k5 can be interpreted to be the variance of the
residual when m (Z;, 0y) is regressed on s (Z;, 0y). Unless such residual variance is equal to
zero, we should expect that the BP test would have a power against the random effects,
i.e., the probability of rejection is higher under the alternative than under the null. Given
that k1 — k42 1Ky is equal to the asymptotic variance of VNmy (éN), we can conclude

that such a pathological anomaly as x; — k5Z 'ks = 0 should not be expected in practice.

As an example, let’s consider a panel logit model where
Yi =YX/ +ani+vy >0}, i=1,....N, t=1,....T, (23)

where ay; = ap under the null and ay; = ap + N~ Y% under the alternative. Let
0 = (a;,'), and assume that v; are errors such that the log conditional density of Y;
given X; and @ is characterized by

exp(X/,0) 1
In f (Y;| X;,60) = n——2t) Y, n— ).
o f (] Z( "ot T T T )

Let Ay (0) := exp (X},0)/ (1 + exp (X/,0)) and note that 0A;/ 00 = Ay(1 — Ay) Xi. Then

we have

Mq

Y| XZ760

zt)
t=1



T

—_ Z Azt(l - Azt)X’LtX@,t

t=1

0?In f (Y;]| X5, 00)
0000

We can see that the BP test statistic is based on

2In f(YVi|X;,60)  (0In f(V;|Xi,00)\°
Z 9 Y 1 (3
( 2 0) 092 + ( 691 )
T T 2
= — ZAit(l — Ay) + (Z(Y;t - Ait)) )
=1 t=1
and if we assume that Yj; and Y, (¢ # s) are independent given X;, then we have
T
I=FE Z Au(1 XXy |
T
R1 = E Z Azt 2Azt +2 Z Azt Az )Azs(]- - Azs) )
t,s,=1,t#s

T

Ro = E ZAzt(l — Azt)(l — 2Azt>th
t=1

3.1.1 Discussion

2

Remark 2 Under the null, we can take o

= 0, so the asymptotic null distribution is

N(0, k1 — khZ ko), which justifies the test statistic (@) See also |Lancaster (1984).

Remark 3 Note that k1 is equal to the variance of m (z,6y) under the null. Therefore,
the component —khL 'Ky represents the noise of estimating the MLE 0,, as part of the test
statistic. It turns out that the linear panel model is a special case where ko = 0, and the

test statistic does not need to be adjusted for the noise of estimating the MLE/OLS. See

Section .

Remark 4 The ko has yet another interpretation. If ko = 0, the MLE is asymptotically

unbiased even under the alternative of random effects, as discussed in Remark mn
0%f(Yi|X,00) /003
F(YilX:,00)

s (Yi| Xi,00), the MLE is not affected under the alternatives of random effects. Note that

1s uncorrelated with the score

Appendix @ In other words, if the statistic

kg is identical to the numerator of the bias formula in panel data analysis as discussed in

20



Hahn and Newey (12004, p.1315).@ If such a diagnostic test is desired, one can test the

null hypothesis ko = 0 by evaluating the test statistic based on

A Y\XZ,HN /067 )

Using standard arguments, it can be shown that this statistic is equal to

N

a8 (Vi Ko 0) /062 R
N 1/2 1 79 1 Y X /I 1N 1/2 Y X 1
Zz:; f(Yi|X¢,90) 3( z| “90)-1-%4 ;S( 1| “60)_1_%( )’

whereEj

[0 (8 (Y| Xi,0,) /063 02 f (Yi] X,,0) /962 0s (Y] X;, 6,)
“‘“‘E[%( F (Vi X;,60) )S(K’X"’QO)}+E[ f (Vi X;,60) 0

It follows that

M f (Vi Xi,On) /063 i
,1/2 2 (2] 1 - ) -1
N E 7 (K|Xi,§N) s (K\ XZ,QN) — N (0,/<;3 A Ii4) ,

i=1

2
where ks .= E [(W) s (Y| X5, 00) s (Vi X5, 00)/] , and the squared standardized

F(YilX3,00)
test statistic takes the form N (/%3 — /%ﬁlf_lfu) - ko, where k3 and ky are straightforward
sample analogs of k3 and ky. Obviously, the distribution of the test statistic under the null
of ke =0 s Xfl (where q is the dimension of 0).

A sequential test procedure can therefore be used in practice. First, test whether there
is neglected heterogeneity in the random effects form, i.e., whether E[m(Z;,0y)] = 0, by
comparing the BP test statistic in (@) with X3 ,_q, the upper o level critical value from
the x% distribution. If this test rejects the null, then proceed to test whether ko = 0
by comparing NK) (/%3 — /%ﬁj‘”ﬁ) - ko with Xil_a, the upper « level critical value from

the Xg distribution. If the null is not rejected, then the neglected heterogeneity does not

20Gee the bias formula involving Va;; in the second to last displayed equation. The Vs, there is equivalent

to our test statistic. See also Arellano and Hahn (2007, Section 3.1) for a similar expression.

21Note that
9 f(Yi| Xy, 00) /007

ke = —F
* JF(Yi] X, 60)

5(Y3] Xi,00)s(Yi| Xy, 00)'

if ko = 0, which may provide a basis for an alternative form of the asymptotic variance.
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significantly affect the inference based on the MLE which does not take it into account.
This sequential procedure has an overall false rejection probability (weakly) smaller than

Q.

3.2 Power of the BP Test Against Fixed Effects

The discussion leading up to (@) indicates that the parameterization h (y| x, 0o, \/ﬁ) is
appropriate for local power analysis when p(X;) = E[g;] X;] = 0, while the parameteriza-
tion h (y|x, 60y, n) is appropriate for local power analysis when F [¢;| X;] # 0. The former
parameterization captures the appropriate second order effects, as is evident in the deriva-
tion of (H), and the latter captures the first order effects. Therefore, a useful synthesis is

to combine the two and to consider the local parameterization of the form

i £;
f (yi 5, (901 + — M(I ) + 0,2, - - - ,90,(1)) ) (24)

N1/2 T N4
where F [e}f| x;] = 0.

Next theorem gives the local power property of the BP test against the alternatives of

fixed effects of the form (@)
Theorem 4 Under Assumptions H - @, and - B detailed in Appendiz @, we get

vV Nmy (éN) = N ([[1, —K’QI’I] (Kp + K}3) , k1 — K’QI’%Q) ,
where Iy, is the k X k identity matriz (k =1 here),
0% f(Yi|Xi,00) /963

oo E{E{ Fovan 5 (Yil Xis 6o) XZ}M(XJ}
F = )

E{E [s (Y| X;,00) 51 (Yi| X, 00)] Xi] p (X3)}

0% f(Yi|Xi,00) [ 003
E{E < FOYiTX00) 1)}
Kj, =

B[] X s (Yi] X;, 6g) ZLomet /692}

f(YiXi,00)

and s1 (Y;| X;,600) denotes the first coordinate of the score s (Y;| X;,6p).
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Proof. In Appendix @ |
Similar to the random effect case, Theorem @ implies that (i) we could use the same

squared standardized BP test statistic in (@), and (ii) its asymptotic distribution under
(12 (K +KG))”

wu(x) e* . PRI . . .
001+ iz + 177 18 @ non-central x7 distribution with noncentrality parameter Ry

3.2.1 In-Depth Analysis of the Linear Model

Note that the fixed effects can be decomposed into two components, p (X;) and €. Their

distinct roles are best understood by considering a linear panel data model
Yit:Xi§//80+aN,i+Uit7 izla"'va tzl:"'7T7

where a; = ap under the null and ax; = ag+N "2 (z;)+N~4e? under the alternative.
It is clear that the correlation between x;; and p (z;) induces the bias in the OLS (i.e.,
MLE), while the presence of & does not affect the unbiasedness property of the OLS.
Although even ¢} induces the MLE to be biased in general nonlinear models, the distinctive
roles are quite clear in linear models. It turns out that the BP test does not have any
power against the presence of p (x;) in linear models. This is because in linear models, we

have

2 Yl X, 2
B |:a f( Zl 1790)/89181 (Y;’XZ,QQ)

f (Y] X3, 60)
so that the first component of Kr is equal to 0, and it can be shown that
(Yi] Xi,00)/ 067
f (Y] X5, 60) }
1 & T 1 & ’
=FE <§ ZXit (Yie — g — Xﬁ’ﬁo)) T2 + (0_3 Z (Yie — g — X;},/Bo)) =0,

t=1

X’L:| = Oa

2
Ro = E |:S<YZ’XZ,90) 8 f

(25)
leading to the implication

(L, —#5T Y Kp = 0.

Remark 5 Fquation (129) holds because for linear models, we have

T
1 o2
55 D (Y —a—XiB),

vot=1

In f(Yi| X;,0) =C —
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where C' is a constant, so

y 82 n f (Vi X;,0) 1 & ,
(Y| Xwe v ;th —a— Xitﬁ)v and 9000’ = _0__3 - Xith‘t-

In particular, we have

lnf (V| X,,0) 1 XT:
o0 _

» O?In f (Y] X;,0) T
a—X}B), and o =

t=1 v

S1 ()/’L| X’we)

We therefore see that

0°f (Yi| Xi,0)/ 003  9°Inf (Y| X,,0)  (dlnf(YiX:,0)\”
fle.0) 002 *( a0, )

1 ZT i
Therefore, we should have

f (Yi| Xi,00)/ 39?}
f (Vi Xi, 6o)

FE |:S<YZ|X“00) a

2
T
=L ( Z Xlt it — Qg — th ﬁﬂ)> _; + (Uig Z (Y;t — Qo — X;ZB())>

e
This seems to indicate that, at least for linear models, the BP test has zero power
against fixed effects in the sense that it is unable to detect the presence of u (X;). It turns
out that the issue is a little subtle, and the BP test does have the power to detect u (X;)
as long as it is in the N~'4-neighborhood, instead of the N~'/2-neighborhood. We note
that the components of [I, —x4Z '] Kr measure the first order effect of misspecification
on the asymptotic mean of my (éN). When [I}, —k5Z '] KF is zero, we can make a more
refined analysis by going through the second order derivative, similar in spirit to Chesher
(11984)’s derivation. To be more specific, we zoom in on the following linear model

p(X;) + ¢
N1/4

with vy ~ N (0,02). Note that the fixed effects, especially p(X;), are in the O (N~1/4)

Y;t :X,;/BO—F +U¢t, t= 1,...,T, (26)

neighborhood. Also note that

2
2f (Y] Xi,0)/ 063 T 1 ;
s (1% )




so the counterpart of v Nmy(fy) is equal to

1 & (EL ﬁit)2 —T6,  N-V2[Iy @ (epely — Ip)]0

W& @ (27 o
where ©;; denotes the OLS residual, ez is a T x 1 vector of ones, and 62 := (NT)™!
SV ST 92, We will assume that T-'E [Zthl X;;X;;’] is positive definite with finite

eigenvalues. We also assume that E [¢fv;] = 0 and E [efu (X;)] = 0.
In order to analyze the power of the BP test under the alternative (@), it suffices
to analyze the asymptotic mean of the numerator N~'/2¢/[Iy ® (epely — I7)]0 of (@) In
Lemma @, we show how Honda ([1985)’s Lemma 1 should be modified under the alternative

of fixed effects:

Lemma 4 Under (@), we have

Iy @ (erer — IP)]0 1 =
Nl/g = N1/2 Z Z VilVim + T (T — 1) FE [522]

i=1 I;m=1,l#m

—2T (T —HNQ N+ (Q7'N)' S (Q7'A) + 0, (N"4),

where Q := T-'E [zle X;;X;;’], X =TT X5 A= E[Xipu(X)], & = p (X)) +

(2

efand S:=F [meﬂ,l#m Xl-*lXi,%} :

Proof. In Appendix @ ]

In Lemma @, we can clearly see that the presence of p (X;) affects the asymptotic bias
through A and F [¢?]. This is in contrast to the argument earlier in this section, where
the BP test was unable to detect p (X;) in the linear model. The difference is that in the
parameterization (@), 11 (X;) was too close to zero in the O (N~'/2) neighborhood for the
linear model, while we show here that p (X;) can be detected by the BP test if p(X;) is
not too close to zero. There already exists a well-known test (Hausman and Taylor, 1981)
for the linear model, which can be shown to have a power against the local misspecification
in the O (N~'/2) neighborhood. The test by Hausman and Tayloy (1981) does not have a
counterpart in the nonlinear panel models, probably because the fixed effects estimator is

not asymptotically unbiased for fixed T for nonlinear models (even after bias reduction).
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The BP test was shown to be able to detect fixed effects in nonlinear models, so it makes
sense to examine whether the BP test has such a property for linear models. Our analysis
in the current section leads to the practical conclusion that the BP test may be best suited

for nonlinear models.

4 A Pragmatic Aspect of the LM Test

In practice, we would have to confront the fact that 6 is estimated and examine how the
noise of estimating @, by the MLE 6, affects the distribution of the test statistic under the
null. We will argue that for the two-way error component panel models with N, T — oo
asymptotics, the noise does not affect the asymptotic distribution. For this purpose, it

suffices to examine the distribution of () evaluated at the MLE

_ 2
1 9% In f (Yu| X, 0,) 1 N (&9 f (Yie| X, 6,,)
VNT ZZ 063 +\/NTZ 2 00, ’ (28)

=1 t=1 i=1 t=1

where we recognize that the MLE is such that v'NT (6, — ) = O, (1) under the null,
with the N,T" — oo asymptotics. Under such asymptotics, it can be shown that (@) has
the same distribution as (@) under the null.22 By a similar argument, we can conclude
that (@) has the same asymptotic distribution as its feasible counterpart, where the two
6y in () are replaced by én.@

Hondal ([1985) analyzed the asymptotic properties of the BP test for the linear model,
and his analysis indicates that the feasible test statistic evaluated at the MLE does not need
to reflect the noise of estimating the MLE. On the other hand, Lancaster (1984) showed
that it is in general necessary to adjust for such noise in general nonlinear models. In
Section , we explained that this seeming contradiction can be understood by noticing

that Lancaster (1984)’s adjustment is unnecessary for linear models™ Tn this section,

22See Appendix @
20ur conclusion only requires that (@) and (@) are both unaffected by the noise of the estimation

of fy. Hence, the joint asymptotic distribution of the random vector consisting of (@) and (@)7 if it is

correctly established, is unaffected by such a noise.
248ee Remark .
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we went one step further to show that Lancaster (1984)’s adjustment is unnecessary for
general two-way error component panel models. Lancaster (1984) implicitly adopted “large
N, fixed T asymptotics, which is natural for one-way error component panel models. In
contrast, the two-way models make it necessary to adopt a “large N, large T asymptotic
framework. Given that the natural asymptotic frameworks are different, there is no logical
contradiction.

Our result in this section has convenient pragmatic implications beyond two-way error
component panel models. First, due to the equality between (E) and (), Lancaster
(11984)’s adjustment is unnecessary for one-way error component panel models if a “large
N, large T asymptotic framework is adopted. Second, and more importantly, due to the
asymptotic equivalence between LM, in () and the sum of (@) and (@) when N =T,

Lancaster (1984)’s adjustment is also unnecessary for directed dyadic regression models.

5 Digression - An LM Test of Conditional Moment
Restrictions

At the beginning of Section a, a version of the test of conditional moment restrictions
(@) was mentioned as a way of detecting neglected heterogeneity. In the current section,
we present a pragmatic version of the test of the conditional moment restriction (@) for
the purpose of testing the model considered by Bonhomme and Manresa (2015). The
test can be argued to be a variant of the generic test of over-identification considered by
Chamberlain (1984, Section 4.2), but is geared for the particular linear panel model in
Bonhomme and Manresa (2015).

Bonhomme and Manresa (2015) considered estimating models of the form Y;, = XY+
o, + vit, where g; denotes the group that the ith observation belongs to. This can be
understood to be a generalization of the vanilla model Y;; = X}/ 5+ a; + vy (possibly with
the time effects as well) against the alternative that there is some neglected heterogeneity
in o; possibly correlated with X/, even under the presence of the individual fixed effects.

Because in the linear model the BP test does not have a good power when the neglected
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heterogeneity may be correlated with X, we may consider adopting a version of the
conditional moment test. For this purpose, it is useful to see that an LM test can be

conducted through the momentsE3
E[AX} (AY; — A0, — AXYBw)] =0, t=2,...,T, (29)

where A denotes the first differencing operator, Oy = (6s,...,07, 8},) with fy solving
the moments

E

T
> X (Ya- X;;’ew)] 0, (30)
t=1

where X5 = X5 — X2 with Xp = NS0 X3, YV, = Yy — Y with V; = N2 320 vy,
and X7, is the counterpart of X that includes time dummies P4 Tf the test rejects, then
we should suspect that there is further residual heterogeneity not captured by the usual
individual fixed effects, and as such, there is a reason to consider the specification of Bon-
homme and Manresa (2015). We applied this test to Bonhomme and Manresa (2015)’s
balanced panel, i.e., the data used by Acemoglu, Johnson, Robinson and Yared (2008),
where N = 90, T' = 7 and dim(X*) = 2. As exploratory analysis, we first run the OLS
of AY}; on an intercept (to capture time dummies) and AX} for each period t = 2,...,7
separately and then run this regression with all periods pooled together (with six time
dummies); we tabulate the results in Table m The estimates of the slope coefficients in
different periods appear to be unstable over time and different from the pooled estimates,
suggesting the presence of some neglected heterogeneity that leads to a violation of (@)

The two-way fixed effect estimates are also reported in Table @@ For testing, we included

25We do not consider ¢t = 1 because of redundancy. If there is a prior suspicion that the fixed effects

may have changed towards the end of the sample, one can test the subset of the moments in (@)
26To be precise, X5 = (I{t =2},...,1{t = T}, X}/)’". Note that here we include both time effects ;

and individual effects a; in the vanilla model (where we exclude I{t =1}, i.e., v1 = 0, to avoid perfect

collinearity).
2"Note the difference between the pooled first difference estimator and the two-way fixed effects esti-

mator, presented in the last two columns of Table E (The two-way fixed effects estimator correspond to
Table S10, Column 4 in Bonhomme and Manresa (2015).) Note that both estimators are consistent if the
two-way fixed effects specification is correct. Therefore, this difference can be taken as another evidence

of incorrect specification.
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the time dummy in the basic model, and adjusted for the estimation of the within esti-
mator (@) when characterizing the asymptotic variance of the empirical moment of (@)
evaluated at the within estimator, allowing for possible heteroskedasticity. The p-value for
all periods pooled is 0.0079, and the p-values for each period separately (¢t = 2,...,7) are:
0.0037, 0.1030, 0.0193, 0.1316, 0.0211, 0.0027. These results imply that the usual fixed
effects specification is not flexible enough to explain the data, which may give credence to
Bonhomme and Manresa (2015)’s specification.

On the other hand, when Bonhomme and Manresa (2015)’s specification is adopted
(the number of groups G = 4), another LM test can be conducted through the moments

G
ZX;KY; — Qgr — X;;BBMMI{gl = g} = 07 = 17 s 7T7 (31>

g=1

E

where oy, and gy solve the moments

a -
E Z(Kt_ag,t_X;/BBM)H{gi :g} :07 t= 1a"'7T7
g=1 i
G T T
E Z ZX;/(Y;t — Qg — X/ Bem)l{g: = g} | = 0. (32)
g=1 t=1 J

The p-value for all periods pooled is 0.9990, and the p-values for each period separately
(t =1,...,7) are: 0.8507, 0.9905, 0.9748, 0.9421, 0.4979, 0.9993, 0.7634. These results
are compatible with the claim that Bonhomme and Manress (2015)’s specification with
four groups captures the time-varying heterogeneity in the data and no further residual

heterogeneity is evident.

6 Summary

We developed a test of neglected individual effects in dyadic regression models by modifying
the BP test. The test statistic is almost identical to the the sum of two components of
the BP test statistic in the panel data analysis for testing the presence of two-way error
components. Asymptotic distribution of the test statistic is carefully derived based on a

novel martingale argument.
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We also derived several interesting results about the BP test in generic panel data
analysis. We showed that the test has a power against fixed effects, even though it was
developed to detect random effects. We also analyzed the nature of the distortion to the
asymptotic distribution induced by the noise of estimating the MLE, and found that the

noise need not be accounted for with one-way linear models or general two-way models.
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Table 1: Slope Coefficient Estimates in Exploratory Analysis in Section H

OLS AYj; on AX}, Two-Way FE
Separate Periods (With Intercept to Control Time Effects) All Periods Pooled
t 2 3 4 5 6 7 (With Time Dummies)
-0.3152  -0.2353  -0.4912  -0.0993 0.0124  -0.2543 -0.2623 0.2835
(0.0798) (0.1384) (0.1465) (0.0679) (0.1712) (0.0743) (0.0495) (0.0573)
0.1432 0.0576 0.1154  -0.0964 -0.4165 0.0393 -0.0300 -0.0313
(0.1267) (0.1880) (0.0916) (0.1121) (0.1623) (0.1129) (0.0498) (0.0490)

1 Standard errors are in parentheses.

2 The results are based on the balanced panel data used by |JAcemoglu, Johnson, Robinson and Yared (2008), where N =90, T' =7
and dim(X*) = 2, which are also used by Bonhomme and Manresd (2015).

3 The details of the estimators reported in this table can be found in the second paragraph of Section E
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Appendices

A Proof of the Theorems in Section

A.1 Construction of a Martingale Difference Sequence Array

We assume 7" := T'(N), where T(N) — oo is an increasing function of N with & —  and
0 < Kk < oo. For simplicity, we will often use notation 7" instead of T'(N).
Our proof of Theorem m relies on a novel construction of a martingale difference se-

quence, which we explicitly discuss here. We can rewrite vV N Ayt as

\/NANTZQ%Z Z UztUzs+ Z ZUztht

i1=1 t,s=1,t#s zy 1,045 t=1
2 N T [t o N T (i
23y (zus) ﬁsz( Uﬁ> U,
i=2 =2 i=2 t=2 \j=1
9 T t—1 9 N i—1
+ oN Z (Z Uls> U + N Z (Z U]l) Un
t=2 s=1 =2 j=1
o [N, T i1 t—1
=5 >N { ( th> + 0 ( Uw> Ui| +0,(1). (33)
i=2 t=2 \ \j=1 s=1
Remark 6 The O, (1) term in (@) is equal to
2 — 2g
NZ ZU1S Ui+ — Z ZUﬂ Ui = Z U15U1t+_ Z UjiUa,
5= N er 1<]<1<N

which is indeed of stochastic order of O, (1) because

2
(2—]5 Z U13U1t+% Z Ulei1>

1<s<t<T 1<j<i<N

2 2
2 2
<20°E (N Z U15U1t> +2F <N Z Ulen)
1<s<t<T 1<j<i<N

8@2 2 8 2

= > E[(UnUw)?] + 2 > E[(UpUn)?]
1<s<t<T 1<j<i<N

_892T(T—1) 4 8 N(N-1) ,

Nz o UT T g U
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—0(1)

asN,T%oowith%%/ﬁand0</<a<oo.

Sl ()

for 2<i< N and 2 <t <T, and we can rewrite the leading term of (@)

EE () o(£))-EE

i=2 t=2 i=2 t=2

Define

Assume N < T in the following, and the case where N > T can be handled symmet-

rically. Define

2
ZN,Q = sz = =

N (Urz + 0Us) Uss.

Next, for 3 < n < N, define

n—1 n—1

ZN,n Z Qnt + Z an + an

i zvﬁ>+e<zvm>} HE() )

j=1
Also, if N < T, then for N +1<n <T, define

a2 (50) (80

ZIN
L[]

/—\

1=2

Therefore, the leading term of (@) can be further rewritten as

e

=2 t=2



and we will analyze 25:2 Zn . using the martingale described below.
For 1 <n < N, define Fy, to be the sigma field generated by {U;; : 1 <i,t < n}. For
N+1 <n <T,define Fy,, to be the sigma field generated by {U;; : 1 <i < N, 1 <t <n}.
By definition, we have 1 C Fyo C --- C Fnr, and Zy, is measurable with respect

to Fnn for 2 <n <T. Also, we have
E(ZN,n|]:N,n—1) =0and F (|ZN,n|> < 00,

for 2 < n < T. Therefore, {Znn, Fnn .2 <n < T} is a martingale difference sequence

array.

A.2 Proof of Lemma

With the assumption N < T', we define

N 5 [N N i1 t—1

Byn = Z INn = N [ { (Z th) +0 ( Uis) } Ui
n=2 =2 =2 =1 s=1
T o [N T i1 t—1

Cnr = Z INn = N [Z Z { ( th) + 0 < Uis) } Uit
= ; s=1

If N =T, then let Cy7 = 0. We can rewrite

\/NANT = Byy + Cnr + Op (1) .

We will work with Hall and Heydd (1980)’s Corollary 3.3 to obtain the CLT. Because
of complexity of notation, we will take care of Byy and Cnp separately and obtain in-
termediate results in the next two subsections. All the intermediate results assume the
conditions in Lemma m, and we skip the conditions in stating the intermediate results.

The intermediate results can be combined to show the result of Lemma m as follows.

Lemma 5 FE “E:ZQE [ZLN”

]:N,n—1] -2 (% + %) oy 2] =o(1).

Proof. From Lemmas @ and @, we have

)
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ZN,n ZN,n

el -pe (e[S




N+ No? +To?
0t +0(1)

=2(0*+1) o, +2(T = N)
2
= NQT(TQ2+N) o +o(l),

from which we conclude that
T 2
7
]
N
n=2
where we recall that x = hm . Combined with

e 5[] o0

which follows from Lemmas @ and , we obtain the conclusion. m

1 o

E

[

n=2

T Zy
Lemma 6 > _,F [N—Q”] =o(1).

Proof. It is a consequence of Lemmas [11] and . |
By Lemmas B and B, we can see that Hall and Heydq (1980)’s (3.38) and (3.40) are
satisfied with p = 2. Therefore, we can conclude by Hall and Heyde (1980)’s Corollary 3.3

Zn 1 2
3% =02 (5 5) 1),

which, combined with (@), implies the result of Lemma EI

that

2
Remark 7 Lemma H implies maxo<, <1 F [%‘ }"Nm,l] = 0, (1), which is a counterpart

fN,n—1:| Z 07

2
of \Hall and Heyde (11980)°s (3.34). This can be seen by letting W,, :== E [Z%"

and noting that we have for any e > 0,




r—74
ZNn

1
ZQ;E_NQ}‘

Remark 8 Lemma B‘ also implies that Hall and Heyde (1980)’s (3.56), i.e., the Lindeberg-

)]

Feller condition, is satisfied. For this purpose, note that

e[l <2

n=2

ZN,n

VN

A.2.1 Analysis of Byy

We will assume that n < N below. Recall that

2

INp = N (Urg + 0Us1) Uz,

and for 3<n <N,

B (o) () )

t=2 j=1
n—1 n—1
7j=1
Notice that
Z12v2 4 2\ 4
E N7 Fni| = ﬁ(l + 0oy (35)

Lemma 7 For 3 <n < N, we have
Z2 40_4 n—1 n—1 U 2 A 20_4 n—1 n—1 U 2 ) (1 4 Q)n(n o 1)
| 2o = it 4 0 0y Z is )y 0 ot
N N3 & ~ oy N3 =\~ oy N3 v
Proof. We have

4 n—1 n—1 U, 2
E[ 23| Frna] = 3 > (Z U_[ﬂ]t> op + 0% (t—1) o} ¢ oF
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4
—i—m{(n—l)aé—i-f(n—l)ag}o?], (36)
from which we derive the implication. m

Lemma 8 Suppose that the kurtosis o Z—Zj is K+ 1. We then have

n

Var (Z %> =2n? 4 (K —2)n, and Var (Z Ui ) =2n* + (K - 2)n.
ou

g
j=1 s=1 u

Proof. We have

)5

g
=1 Y

E

+3) E

J7#5’

% 4 % 2 Uj’t 2
oy oy oy

=n(K+1)+3n(n—-1), (37)

SO

The second statement holds by symmetry. m

‘/T_.N,n—l} - B [Zjlf,"D ﬂ =o0(1).

2
Lemma 9 [ [’2522 GES

2
Proof. Since (% P an> <+ ZnNzl a?, the desired result of the lemma follows if

we show

%Z (B [Z8n| Frna] = E [Z?V,n]f] = o(1).

Notice that by the independence among U;; and the definition of Fy 1, we have E [Z12v,2‘ F NJ] —
E [212\7,2] = 0. Then,




N

S (8 ZMHHFH%W]

n=3

1
E\y
N
Zv E[Z%,]| Fxn-])
]?f n—1 n—1 2 4@2 n—1 n—1 U 2
LS (Bl (5 )|
7j=1 1= S=

where we used Lemma B for the last equality. Therefore, we have

QOO| —

1
:_?]NZ

n=3

b [53 (B2l ] - B ]

n=2

2
where in the last equality, we used the fact that (i) <Z7;:_11 %) are independent over ¢;

2
and (ii) (Z;:ll g—U) are independent over i. Using Lemma B, we obtain

()
(&

)

n—174(K-2)(n—-1),

2(
U
U’iS 2 (
U

g

Var
Var n—17°+ (K —-2)(n—1),
from which we obtain

N

Z%EliE:aﬂz@wﬁmq}—Ep@Af]§§3%%ﬁl§:[_:un—n?+_(K—Qﬂn—m

n=2
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as required. m

fN,n_l]) —2(® +1) ok +o(1).

Lemma 10 YV E (E [Z%”

Proof. For 3 < n, from (@), we obtain

n—1 n—1 2
4 U,
E(E[ZY,| Fyn]) = 2 E (Z 0_§> o2+ 0*(t—1)o% 3 o2
t=2 j=1
n—1 n—1 2
4 Uz’s
+ 2 (i—1)op + 0°E (ZJU> 0% ¢ on
=2 s=1

4
L -1t + - 1)a?} o,
from which together with (@) we obtain

sEr (%)

=2

4 4
:ﬁ(l—l—Q +Z<m
n=3 t=

+Z<N3§; @—1)—#@%71—1)))—#% 3(n—1)

n=3

(n—1)+0*(t - 1)))

—2(0*+1).
]
Lemma 11 YV E [%] =o0(1).
Proof. It is straightforward to show that
Zy

Né}zo(l).

d

In what follows, we show




n—1 i—1 n—1
{5 o (5 e
=2 j=1 s=

so we see that Zy , is the sum of n—2+n—2+1 terms of = { (Zn 'U. t) +o0 (Zi;ll Uns)} Ui,
{(Zz 'y, ) +o (X )} Usp, and 2 {(2” U, ) +o (X0 UL )}Unn,wherei,t:

2,...,n—1. For notational simplicity, here let’s call each term W; with j = 1,...,2n—3. We

first note that W; and W}, are independent conditional on Fx ,—; due to the independence

among U,;, U;, and U,,,. Then, we have

2n—3 2n—3
[(Z W) FhNon-1 :ZE[VI/JﬂJfN,n,JJrBZE[VVf ]
=1 i#d’

Using the Cauchy-Schwarz inequality, we have

2n—3 2n—3
(ZW) Fnnot| €Y E[W}| Fyn] +3Z\/E W}]—“an\/E 1]
1 j#5'
2]n_3 JI7I
<N BB W Faa] 433 /B [WE Frn ]\ E (W] Faaoi]
— ~
J - JI7J )
(3 ETR)
j=1

2
In what follows, we derive an upper bound of < 2” 3 \/ E W |.7Nn 1]) )

Note that

()
)E<( th>+9<:§§%> | £y
)| ((

n—1 t—1 4
th) + 0 <Z Un8> ]:N,n—l (K + 1) 0-24]
s=1

1

H

I¥
—

J
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From (@) and symmetry, we have

E [(ti U”S) } — (- 1)K+ 1) +3(t — 1)t —2)

g
s=1 U

=3t -1+ (K-2)(t—1).

Then,
t—1 4
FE ((Z th) + Y ( Uns)) J—-.N,nfl
s=1
n—1 n—1 2
j=1 J=1
n—1 t—1 3
+ 40 (Z th) E ( Uns) +0'(Bt—1)+ (K —-2)(t-1))
j=1 s=1
Using that

t—1

> U

s=1

— (t—1)So?,

o[(Ee)]-+

where S denotes the skewness of U;; /oy, we further conclude that

J(E0) 8 Um))“

_ (jzj th)4+692 (Z th> (t—1)o

+ 408 (nz_: th) t—Dop+o" B1t—1)7+(K-2)(t—1))ap

J=1

Notice that if o = 0,

On the other hand, if o # 0,

(BR) < <Z th> + 80° (nz_: th) (t—1)of

=1
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+0'(3(t—1)2+ (K —2)(t—1)) o +2(t — 1)0* S0,
where we used the fact that
60°2% (t — 1) of +40°Sz (t — 1) o} < 80*2% (t — 1) 0f + 2(t — 1)0*S?a;

for all z on the real line and ¢ > 2. Then, we can find a finite constant M (that only
depend on K, S, 0%, o) sufficiently large such that

o' (3(t— 1+ (K —2)(t— 1)) of +2(t — 10" S < M* (¢t — 1)?,

1 <2M(t—-1),
80> (t— 1) o, <2M (t — 1),

for all t = 2,3, .... For example, it is possible if

1
M > max { (3@406 + | K — 2|00} + 2@45’20(4])1/2 >t 4@2012]} )

Then, it follows that

_ (%)4}; ((%1 th> +0 (i Um>>4 Fra-t| (K+1)0f

4 2
9 4 n—1 n—1

and here and in what follows C denotes a generic constant. Likewise, we get

. 4 2
9 1—1 n—1 C n—1 .
E (N { (; U]n) + 0 (; Uzs) } Um) ]:N,n—l S m (Sl Uzs) + M (Z - 1)

Using (@) and symmetry, we also get

) e o
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Then we derive the following upper bound of Z?ZS \/ E [W]ﬂ FNn-1] as

2

2n—3 n—1 C n—1 U 2
4 -~ “jt _
Z VE W} Fyna] < > | v (Z O_U> +M(t—1)

N

n—1 n—1 2 2
C U'L's . C 2
+ F (E UU> —I-IM(Z—D + m(n—l).

=2 s=1

Using the above bound, we obtain

2n—3 S 2
— FN,n—1:| = e (Z W) Fun—1| < 2 Z \/E [VVﬂ fN,n—l}
j=1

c (S (S o\
<% > <Z—> + M (t—1) +Z (Z >+M(z—1) +(n—1)

o
=2 j=1 U

(Dn,l + Dn,2 + Dn,3 + Dn,4 + -Dn,5)2

< — (D}, + D} ,+ D} s+ D}, + D; )

n—1 n—1 Uj; 2 n—1 n 1
where D, 1 = > 7, (>0 —J> y Dypo = MY P S(t—1), Dps := >0, < A UU)
Dypy:=M Z?:_;(i —1) and D, 5 := n — 1. By the Cauchy-Schwartz inequality and @ ),

we have
E(D.)) < nnz_:E ("Z_: %> < nn_ (n—1)(K+1)+3(n—1)(n—2) < Cn*.

Similarly, we can show

Also, it is straight forward to see that
D.,+ D+ D2, <Cn

for 3 < n. Then,

I ol | R

as desired for the lemma. =
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A.2.2 Analysis of Cyr

We will assume that n > N below. Recall that

for N+1<n<T.

Lemma 12 For N+ 1<n <T, we have

2
Z]2an 2 4920_2 N n—1
E{ : fN,n_l] :m(N—l)aé—i- NSUZ > U

N
Proof. It follows from

4 N n—1 2
E [Z?V’n‘ fN,nfl] = N2 Z (i —1)op + 0° ( UZ-S> 0P

2
ZNn

=00,

P -£[2])

Proof. Using the Cauchy-Schwarz inequality, we have

> (e[ Bl - 2[5

Lemma 13 F UZZNH <E [

n=N+1
1 T
PR NENS RN
n=N-+1
T-N 1 d i
Ty 8 @R )
VI-N[1 & 2
N E[Z% | Fxnal - E[Z2.])°] .
(3 X ezl - £l
Since % — % — 1, the lemma follows if we show
1 d 2 2 2
E |~ > (E[ZX,] Fyna] — E[Z3,])7] = o(1).
n=N+1
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We have

1 |1 &
oy n=N+1
11 &
— Eﬁ ; Var (E [ZJQVn|.7:Nn—1D
n=N+1
2
11 r 4@20'4 al — Uss
TN 2 Var| T (Z cm)
n=N+1 =2 s=1
AT N /n-1 2
_ 16@5 Z V r Z ( Uzs)
n=N-+1 = s=1 v

where we used Lemma [12 in the second equality, and in the last equality, we used the fact

2
that (an U) are independent over ¢.

s=1 oy

Using Lemma E, we get

Var <EU> —2(n—1°+(K—-2)(n—1).

o
s=1 v

It follows that

T
1 1
<E|5 Y. (B[Z|Frva] - BZ3,])°
u n=N+1
4 T N
16@ SN @01+ (K —2) (n—1)
n=N+1 i=2

from which we get the desired conclusion. m

2
ZN,n

Lemma 14 Z::NH E (E [ &

Frna|) =2(7 = N) BT 1 o (1)

Proof. Using Lemma @, we have

T T N /n—-1 2
1 2 492 Uis
7 20 ([T lmen]) = 3 E e ( ; )
U N n=N+1 i=2 \s=1 U



n=N+1 i=2
2 2
= T — T+ ——24+—0p*>—2¢°
N T Ty ety e
2 2 2 2 2 2 2 2 2 2 2 2
2
=20+ =T T?0% — 2 1
o+ T+ ETo +o0(1)

Proof. Recall that for N +1 <n < T, we have

9 N 1—1 n—1
ZN,n = N 2; { ( — U]n) +o <2; Uzs) } Uina
1= 1= S=

so we see that Zy, consists of N — 1 terms like % {(ZZ ! U; > +0 (Zz;ll Uis)} Uin.
Let’s call them W) with j =1,..., N —1. We first note that W, and W} are independent

conditional on Fy,_1 due to the independence among Uy, (i =2,..., N). Then, we have
N-1 4 N-1
SIS ES SEFIESRE) LA e
j=1 j=1 it

Using the Cauchy-Schwarz inequality, we have

N-1 4 N-1
(ZW}> Foms | < 32 B (W] Fvan] [ 433 B W} Fraa] \JE W,

Jj=1 J#J’

2@
HH

IN

8B (W Fo] | +33 E[WH Frun] |/ E[W;

1 J#5’
N-1 2

NaTE)E
j=1

As in the proof of Lemma , we can bound

9 i-1 n—1 4 C n—1 U 2
£ | } . ol <= is M(i—1
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for some finite generic constant C. Therefore, we get the following bound

2

where we use the Cauchy-Schwarz inequality in the last line. By (@) and symmetry, we

have
n—1 U 4
E (Z ZS) =n-1)(K+1)+3n—-1)(n-2).
s=1 ou
Therefore,
T 4 T 4
ZNn ZN,n
> w5 = 3 e || A
n=N+1 n= 1

as required for the lemma. m

A.3 Proof of Lemma

Note that the following equality holds if o = 0:

1 N \/N 1 N 1 N T
N TZ ZUitth:ﬁ NVN Z ZUitth+QN\/NZ Z UitUis

i,j=1,i#j t=1 i=1 t,s=1t#s
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VN

WANT7
so its marginal asymptotic distribution can be deduced from Lemma m by taking o = 0

2
and multiplying the asymptotic variance by (hm ‘/—g> = k. In other words, Lemma El

implies that

Z ZUnUﬁ = N (0,207).

i,j=1,i#] t=1

By symmetry, we can deduce that
Z Z Uy U = N (O, 20'[4]) .
i=1 t,s=1,t#s

Lemma EI implies that in addition to these marginal asymptotic results, their joint

asymptotic distribution is also normal. Letting cov denote the asymptotic covariance, we

see that the asymptotic variance of WT Zf?;:l#j Zthl Uitth"'gﬁ Zi\il 223:1,#3 UirUis

would be
4 2 4 4 o 1 4 o\ 4
200 +&° - 200 + 28cov = 20, + 0 . 207 4+ 26cov =2 ( 1+ o + 2&cov.

On the other hand, the joint distribution can be taken care of by analyzing

N T

L Z UUji +f Z Z UUis
N T i,j=1i#j t=1 i=1 t,s=1,t#s

VN ( - \[ r )
= UUjy + € Ui,

\/T N 7321:175]; o ;ts—zl:t;és t

\/N< 1 )
i UiUji + Q UiUis

\/T N ,J;#; o Zzlts;yés t

N
— /7 Axr

for o = £y/k, where we assume for convenience that N/T is fixed. According to Lemma m,
we obtain that the asymptotic variance of ﬁf Zf’?}jzl,i#j Zthl Uitth—l—ﬁﬁ Zfil 23:5217t?55 UiUis
is equal to I - 2 (% + i—z) of =2 (1 + %) of; regardless of the value of . So, we conclude

that the asymptotic covariance cov should be equal to zero. To conclude, Lemma m implies
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that

Z ZU@tUﬁ,\/_ Z Z UnUss /:>N
(7 )|

zy 1,i#£5 t=1 i=1 t,s=1,t#s

A.4 Proof of Theorem m

We assume that NV = T and examine the contribution of the term with ¢ = ¢. In other

words, for (), we are looking at

}/7,15‘ th7 90

0?In f ( jR— (9lnf Yii| Xit, 0o) i
mzz St s (3, S C e

=1 t=1 i=1
2
22821nf zt|Xit790 B 1 i Zalnf 7,t|Xit790)
06? VNN T\ 06,

=1 t#i 1=

1 Za2lnf(yii|Xii,90 1 ﬁ:(alﬂf Yzz|Xu,90))
1
(

~ VNN & 067 VNN £ 06,
2 Z Oln f (Y| X, 60) ialnf Y| Xir, 6)
\/NN 801 801

t#1

1 Z <8 In f (Va| X, 6o) + ( 1nf(Yii|Xii’00)> ) (39)

~ VNN & 902 00,

L2 (alnf mxu,e@) L g f (Yl Xioho) | (40)
N 891 \/N e 801

1=

2
% In f(Yis| Xii,0 In £( Y| X53,0 N o
Because 2 nf((%?‘ 0) + (8 n/( aal °)> is iid over ¢ with mean zero, we see that the
1

term in (@) is of order O (N~'). As for the term in (@), we see that

90, VN £ 96, -

E

and

. (alnfm-\xﬂ,e@)? L §nOm g (X))
80, VN < 99,

1 & Oln f (Y| Xit, 6p) 2
b [(W; 00, ) ]
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=k

(91I1f (Y;z| Xii, 90) ?
00,




=0(1),

SO

E

Ei(alnf(YMXu,@o)) L g olnf (Yl X)) | _
N 90, VN £ 96, |

i=1

2 N 81nf(Yu|Xu,00) 1 N 8lnf(Y;t|Xit,90) ’ o _
b <NZ( 00, > W; 90, =07,

=1

Therefore, the sum of (@) and (@) are of order O (N~%/2); that is, ignoring the i = ¢
terms in () does not add any complications to the asymptotic distribution analysis. The
same conclusion can be drawn for (@), too. This shows that the difference between the
two test statistics LMy and BP,,, is small, as argued at the beginning of Section .
In addition, recall that we have shown after (@) that the two statistics in Lemma E are
asymptotically equivalent to () and (@), respectively. Then the result of this theorem

follows from Lemma @

A.5 Proof of Lemma @

Letting @Q;; = % (Z;,_:ll Uij/> Uj for 2 < 4,j,77 < N, we can follow the argument in

Remark B to rewrite

For n > 3, define

n—1 n—1
=2 =2



where the last equality holds because U,,, = 0. Then we get
N
VNAy =Y Zy,+0,(1).
n=2

In order to overcome the difficulty related to the dependence, note that we can write

the second component of Z3 , above as

n—1 /n—1 n—1
(Z UU) Z Ulem + Z (Z Ul]) n
=2 \j=1 =2
- Z Uzl Uzn + Z Uzg Uzn

i,5= 2@#]

:ZUﬂUmJr Z UsiUnn + Z UijUin

= 21<] = 21>]

:ZUlezn+ Z Ungm_l' Z UJZU]"

1= 21<] 1=2,7>1

= Z Ui Uy, + Z (UijUin + UiUjn)

1=2,1<j
n—1 n—1
= Z UinUp;i + Z Usij (Uni + Uyj)
i=2 i=2,i<j

where we used U;; = 0 in the second equality, simply interchanged the indices ¢ and j in
the last term of the fourth equality, and the fifth and the sixth equalities hold because
Uj; = U;;. It follows that

n—1

. 2
ZNn = N Z UnlUnz + — N - QZKJ Uann] + — N Z Ulenz + = N g ;Kj Uij (Unl + Un]) :
Note that
N n-1 ]
N ;;UnlUnz_ = 07
N n-—1 2] 1 N n—1
(NZZ nlUm> IWZ Ué:O(1>7
n=2 1=2 n=2 (=2
and

1 N n-—1
HER R i

o1



so we can further write

VNAy = = Z Z UpniUpj + — Z Z o (Uni + Unj) + 0, (1)

n=2 i=2,i<j n=2i=2,i<j
For n > 4, define
9 n—1 n—1
Inn = ;J UpiUn; + | ;q Usj (Upi + Unj)

then we have

VNAy = XN: Znm + 0,(1). (41)

And because U;; are iid, we have
E [ZN,n| ]:N,n—l] - 07

where Fn,, 3 <n < N, is the filtration defined in page 33 with U;; = 0.

Again, we will work with Hall and Heyde ([1980)’s Corollary 3.3 to obtain the CLT. By
Lemmas , and @ below, we see that Hall and Heyde (1980)’s (3.38) and (3.40) are
satisfied with p = 2. Therefore, we can conclude by Hall and Heyde (1980)’s Corollary 3.3
that

S22 - N 020,

which together with (@) implies the result of Lemma B

Lemma 16

_ _ 4 nzl N\ 2
E[ZJQ\/,”}}—N@A]:Q(” 2) (n 3)a§+80U Z <UZ]>

N2

4 do2 X 2
“U Z Z UsUsy + =5 Z Z Uil
j=41

1=2 j>14,5'>1,5' #]

n—1
Z Uz]Uzz+ Z UijUjj’~

2=1'<i<j 2=i<5<y’
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Proof. We have

2
9 n—1
Z3en = (ﬁ > (UnilUnj + Usj (Uni + Unj)))
i=2,i<j
4 n—1
=3 O Uil + U (Ui + Uny))?
i=2,i<
n—1
4
t 32 >, (UniUnj + Uij (Uni + Unj)) (UnitUnjr + Uiy (Unir + Uny)) -
i=2,i< i =2,i' <! i #i or §'#]

We start with the analysis of the first term on the right, and note that

4 n—1 ) 4 n—1
Bl Y (UnilUlnj + Uiy (Uni + Usy)) me—l] =Nz > (b + U (207))
i=2,i<j i=2,i<j
2(n—=2)(n—3) , 8of — 9
1=2,1<7J
As for the second term on the right, we need to consider the following four cases:
Case I: i/ = 1,5’ # j, leading to
4 n—1
e Z B [(UniUnj + Uij (Uni + Unj)) (UniUpjr + Usjr (Ui + Upje))| Fyn-1]
=2,6 <, =2,i! <j' i =i,j' £]
4 n—3 n—1
1=2 j>i,5'>i,5'#]
Case II: i' #£ i, j' = j, leading to
4 n—1
Z E [(UniUnj + Uij (Uni + Unj)) (UnirUnj + Uity (Unir + Upj))| Fnn1]

N2
i=2,i< =20/ 1§ =
4 n—1 n—2
2.
= WE Y UyUsjois
=4 i<l <jii' i

Case I1II: i’ < j' =i < j, leading to

n—1
4
e Z E[(UniUynj + Ui (Uni + Upj)) (UnirUni + Usri (Upir + Upi) )| Fnn—1]
2=il <jl=i<j
4 n—1
- A2 Z UijUi’iUgf;
2=il <i<j
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Case IV:i < j =1 < j', leading to

2
9 it

n—1
4
= Y, ElUnilUn + Ui (Uni + Unj)) (UnUnjr + Usjr (Unj + Unj)))| Favni]
1<)=1'<

j/

n—1
U..U..o?
>33 U

2=i<j<j’

Combining these four cases and the first term gives the result of the lemma. m
72 2
FNn- 1] —E[ %"])‘ } =o(1).

Proof. Since (% SN an> < Zn a2, the desired result of the lemma follows if

2
ZNn

Lemma 17 E szjﬂl( ES

we show

We have

1 1 N N
~E [N > (E[Z},| Fyna] — E [ng’n}f] - =% > Var (E[Z},,| Fyn1]) -
U U

n=4

Using Lemma @, it suffices to show that

ZVar(SUU nzl ( )):ou), (42)

1=2,1<j

1 2 n—3 n—
~ Z\/ar ( Z UiUsyr | =0(1), (43)
n=4 1=2 j>1,5'>1,j'#j
N 9 n—1
~ ) Var ( ’ UyUyi | =0(1), (44)
n=4 =4 i<g,il <g,il i
1 N n—1
LSV ( LS ) o), (@)
n=4

UijUjj/> =0 (1) . (46)

In order to prove (@), we note that by the iid of Uy,

(5 £ () 5E(£0)

1=2,i<J 2,i<j

o4



2
(n—B n—1 %%>
=2 j>igimigii U U
n—3 n—1 (Uz>2<%>2
1=2 j>i,5' >4, #j ou u
n—3 n—1

> E
2 ) ()

n=4 =2 j>i,§'>i,§'#]

s}

© =

where the first equality holds because E <Z?:_23 st Uij i’) =0dueto E(U;;) =0

J>4,3'>4,3'#) oy ou
and the iid of U;;, the second equality holds because we know that the cross product terms

are zero due to the fact that i < 7, i < j' and 7 # j/, the third equality holds because
E(U;;) = 0 and U;; are iid, and the fourth equality holds because we recognize that

S ;L;il,j'>i,j’7éj Var (Zg) Var (%) = O (n®) uniformly. We can prove (@) - (@)

similarly. =

Z%m
N

Lemma 18 YV FE (E [

Fra|) =208 +0(1).

Proof. Note that the last four terms in Lemma [1§ have zero expectations due to the
iid of U;;. Therefore, Lemma @ implies that

N 2 N N n—1

1 Zn 1 4ot (n—2)(n—3) 1 8o,

e M C L

R ALY 2 T\ W 2
_g<N—1><N—2><N—3>+3i<n—2><n—3)
-3 N3 N3 £~ 2
_2(N-D(N-2(N-3) 4(N-D(N-2)(N-3)
3 N3 3 N3

— 2,
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where in the second equality we used the definition of o7, and in the third equality we

used the fact that 320, (n —2)(n —3) = (N = 1)(N = 2)(N — 3)/3. =

4
Lemma 19 Y E [Z;VV;] —0(1).

Proof. We rewrite

n—1
ZN’ ::__ j{: lﬁmUﬁ]*'__ j{: l@] Uﬁz+'Uﬁ»
1=2,1<J 1=2,1<j

9 n—1 2 n—2 2 n-!
= Z Vina + N Z Vina + N Z Vin,
j=3 J=2 =3

where we use the symmetry U;; = Uj;, and define

J—1

vgnj = E Uin LGn::: jmlLGna
=2
n—1

Ving = Uij | Ujn = Wi oUjp,
i=j+1
j—1

an,3 = Uji an = jn,3an'
1=2

—
=
@
o
(9]
&,
=
@
o
=
(9]
n
o
=+
g
&

z4 . 1 N n—2 !
= } = o(1) follows if we show 5 >, _, &/ <Z Vin ) -

o(1) with m = 1,3, which follow if we show

o
=
(o
2
m
gﬂ
g
&5
—
/N
Eﬂ
Il
w H
Q< | — |
S
3
N———
~
—
I

E <n vjn,z) = O(n'), and E (Zvjnm> = O(n%), (47)

where m =1, 3.

First note that there is a generic constant C such that
E[(Wju1)'] £ C5%, E[(Wjn2)'] < C(n—3)°, E[(Wina)'] < O,

because each W, , (m =1,2,3) is a sum of (j —2) or (n — j — 1) iid random variables
with mean zero and finite fourth moment. Our proof of (@) consists of three parts.

Part (a): We show E [(z;:; vjmﬂ — O(n).
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Notice that
E [Viin1Visn1Visna1 Vigni] = 0

unless one of the following cases happens. (al) : j1 = jo = js = ja; (a2) : three indices are
equal to each other and larger than the remaining one index (i.e., (j1 = js = j1) > J2);
(a3) : two indices are equal to each other, the remaining two indices are equal to each
other, and the pairs take different values (i.e., (j1 = j3) # (jo = ja)); or (a4) : two indices
are equal to each other, remaining two indices are different from each other and from the
first two identical indices (i.e., (j1 = ja) > jo > js). Recall that the expectation is zero if
Ja > (1 = ja) > J2, J3 > J2 > (J1 = Ja), OF j1 > Jo > ja > Ju.

Case (al) : We have

S piwion =S ewn s o (5 7) -om

Jj=3 Jj=3

as desired.

Case (a2) : By the Holder’s inequality, we have
E[(WjinaUsin)* (WjanaUjn)]

1/4

IN

‘ (E[(ij,lUj1n)3]4/3)3/4 (E [(Wj2n,1Uj2n)4])

< | (E[(Vlen,lUjln)ﬂ)g“] LZ (B [Wsna Ui
- (S e[S e )|

as desired.

Case (a3) : By using a similar argument in the proof of Case (a2) with the Cauchy-

o7



Schwarz’s inequality instead of the Holder’s inequality, we can show that

Z Z El(Wn1Ujin)*(WigniUpn)? < O(n?).

J1=3 jo=3,#j1
Case (a4) : We then have to deal with

n—1 n—1

n—1
S B[V VimaVini]

1=3 j2=3,<j1 J3=3,<j1,<J2

.

n—1 ji—1j1—1j2—1j3-1

Z Z Z Z Z E U“nU U’2”U@3”U]21nUJ2nUJ3n]

J3<ja2<ji 41=2 i{=2 i2=2 i3=2

- Ji—1j1—1j2—-1j3—1

Z SN EUnnUsguUisnUsanUpanUson] E [U2,] -

J3<j2<j1 t1=2 i{=2 i2=2 i3=2

We further consider several cases in case (a4):

o Case I: Let’s first assume that iy = i3. If this is the case, we have iy = i3 < j3 < Jo,
so we can have F [UunUz nUzgnUz3nUJ2nU]3n:| # 0 only if (i1,4}) = (J2, j3) or (i},i1) =
(72, 73). This contributes

-1 j3—1 n—1 ji—1j2—1
Z ZE UlinUJQQnUfSn} E Jm - (ZZZ 33_2> ( )

J3<jg2<j1 13=2 J1=4 jo=3 jz=2

to the sum.

o Case II: Let’s assume that i, < i3. If this is the case, we have iy < i3 < j3 < ja, SO

we have F [UimUZ-/lnUZ»QnUBntQntgn} = 0 regardless of the value of (iy,1}).

o Case III: Let’s assume that iy > 3.

— Case Il (1): If we have iy < j3, we have iz < iy < j3 < jo, F [UilnUi/anl-QnUigntijan} =
0 regardless of the value of (i, ).
— Case III (2): Let’s assume that iy > i3, and j3 < iy, which means that iz <
Js <ig < Ja.
« Case III (2-a): Let’s assume that iy > i3, and j3 < i3, which means that
13 < Jg < 19 < jJo. If thisis the case, we would have F [Uiani/ananignijUj:m} =

0 regardless of the value of (iq,7)).
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« Case III (2-b): Let’s assume that iy > i3, and j3 = iy, which means that
13 < j3 = 19 < jJo. If thisis the case, we would have F [UianianUiQnUignUanij} #*

0 only if (i1,4}) = (i3, j2) or (i1,}) = (Ja,3). This contributes

n-l gzl n—1 js—1
Z Z E [UiszjanUjgsn} E (Uj21n) + Z Z E [UinUinUfgn} E (Uj21n)
J3<g2<j1 1=2 Ja<je<ji i3=2

n—1j1—1j2—1 n—1 j1—1j2—1
(855 0-0) 10 (S5 S 60 o)
J1=4 jo=3 j3=2 J1=4j2=3 jz=2
. 4
Part (b): We show E [(Z?} V}n2> } = O(n%).
Notice that
E [‘/}171,2‘/}271,2‘/}371,2‘/]'471,2] =0

unless one of the following cases happens. (bl) : j; = jo = j3 = ja; or (b2) : two indices
are equal to each other, the remaining two indices are equal to each other, and the pairs
take different values (i.e., (j1 = j3) # (J2 = j4)). The reason is as follows. Suppose that
one index, say ji, is different from the other three indices, say jo, js,js. Then, Uj, , is

independent of the rest, and so we have

E [‘/jln,2‘/jgn,2‘/j3n,2‘/j4n,2]
= E[Wa1j 2Wa1j, 2Ujsn Wi 145 2Ujs s Wi 154 2Ujs 0] E [Ujy ] = 0.

The desired results in the cases (b1) and (b2) follow by the similar arguments used in cases
(al) and (a3), respectively.

Part (c): The desired result £ {(Z?—gl an,3>4] = O(n*) follows by the same argument
used in Part (b). =

B Proof of the Theorems in Section @

B.1 Regularity Conditions

Assumption 1 The observed data Z; (i = 1,...,N) are independently and identically

distributed. Z; belongs to a measure space Z and consists of two subvectors X; and Y;
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such that Z; = (Y/, X])', and the conditional probability density function of Y; given X; is

)

h(y|z,6,m), where Oy is a q-dimensional parameter and n is a scalar parameter.

Let € © C R% Let v := (¢',n) and v € I'. Let §; (j = 1,...,q) denote the jth

element of 0.
Assumption 2 For all § in © and almost all z in Z, h(y|z,6,0) = f(y|x,0).

Assumption 3 Let ¢; be a random variable that is independent of X; and has a probability
density function k(-) such that [ ek(e)de =0 and [ e*k(e)de = o2. Define h(ylz,~) =
f(y|$, (91 + ne, 92, . ,Qq)/).

Assumption 3’ Let e} be a random variable with a conditional probability density function
k(-|x) such that [ ek(e|z)de =0 for all x in the support X of X and sup,cy [ €*k(e|x)de <
co. Let p(x) denote a function of x and define h(y|lr,v) = f(ylz, (01 + n*u(x) +
ne*,ba,...,0,)).

Remark 9 Although h(y|z,~) in Assumptions B and @ is conceptually different from that
mn Assumptions@ and @, the former, when integrating out £ (or €*), satisfies the conditions
in Assumptions B and @ For this reason, we will slightly abuse the notation and use

h(y|x,~) to denote both.

For a matrix A = [a;;], let |A| = max; ; |a;;|. Let fx(x) denote the marginal probability

density function of X;.

Assumption 4 For almost all z in Z, In f(y|x,0) is twice continuously differentiable
with respect to 0y, and f(ylz,0), In f(y|z,0), dln f(y|z,0)/00, and O*In f(y|z,0)/06?
are all measurable functions of z for each 0 in ©, where © is a compact subsets of RY.
For almost all z in Z, In f(y|z,0), Oln f(y|z,0)/00, and 8?In f(y|z,0)/007 are all con-
tinuously differentiable with respect to 6. O0ln f(y|x,0)/00, 0 (01n f(y|x,0)/001) /00 and
9 (0*1n f(y|z,0)/00%) /00 are all measurable functions of z for each 0 in ©. fx(z) is a

measurable function of z for each 0 in ©. 0y is an element of the interior of ©.
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Assumption 5 There exist measurable functions a(z) and b(z) such that | f(y|x,0) fx(x)| <
a(=) and 0f(s1,0)/001, 10°F (gl 0) /063, 1% In F(ylz,0)/06312, |00 f(ylz,0)/000]*, |0°
In f(y|z,0)/00300'|, |0n f(y|x,0)/00| and |0?n f(y|z,0)/0000'| are each less than b(z).
Further, it is the case that [ a(z)dz < 400 and [b(z)a(z)dz < 400, and that the set
{z: f(y|z,0) > 0} is independent of 6.

Assumption 6 If0 # 0y, then A := {z : f(y|z,0) # f(y|x,00)} satisfies [, f(y|x,bp)dy >
0.

We write ¢(z,0) = (m(z,0)',s(z,0)"), where m(z,6) is defined in equation (@) and
s(z,0) = s(y|x,0):= 0ln f (y|x,0)/ 00 denotes the score. Define

V.= /g (2,00) g (2,600) f (y|z,00) fx (x)dz.
Assumption 7 The matrixz 'V is nonsingular.

Now we define some general notation. Suppose that g(z, ) is a scalar function, h(z,~)
is a density of Z with parameter v, and Z; (i = 1,..., N) is a sequence of observations from
h(z,7), where an extra subscript v on Z; is suppressed for notational convenience. Define
gn(0) := N3N g(Zi,0), and when the expectation exists, ¢(6,7) := [ g(z,0)h(z,7)dz.
This notation does not refer to the specific functions defined elsewhere in this paper, and
it will be used only in the following lemma, which is a restatement of Lemma A.1 in Newey

(1985)@ and is helpful for the proof of Theorems a and @

Lemma B.1 Suppose that, for each 0 in O, g(z,0) is a measurable function of z, for
almost all z in Z a continuous function of 6, and © is compact. Suppose that, for each ~y
in I, h(z,7) is a measurable probability density on Z, for almost all z in Z a continuous
function of v, and T is compact. Suppose that there exist measurable functions a(z) and

b(z) such that h(z,v) < a(z) and |g(z,0)| < b(z) with

/ b(2)a(z)dz < +oo, / a(z)dz < +o0.

28We slightly modify the notation in Newey| (1985) to suit our paper.
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Then ¢(0,v) exists and is continuous on © x I'. Suppose, in addition, that Z,...,Zxn
are independent observations with density h(z,yn) where imy_oo YN = Yo. Then for all

e >0,
lim P (sgp 93 (0) — 60, 70)] = ) 0. (48)

Proof. See Appendix of Newey (1985). m

B.2 Proof of Theorem

For ease of reading, we will follow Newey (1985, Proof of Lemma 2.1) as closely as possible.

Step 1 Let

o (0) := /g(z,@) h(y|x,00,v/n) fx (x)dz, (49)

V, = /g (2,600) g (2,00)" h (y| z, o, V) fx (x) dz — ¢y(00)y(60)". (50)

By Assumptions @ and B, the elements of g(z, ) and the density h(y|z,0, /7) fx(z) satisfy
the conditions of Lemma @, implying that ¢, (6) exists and is continuous on I'. Then by

Assumption B, we have
}]lir(l) ¢W(90> = ¢0<00), and }]11}(1) Vﬂ =V (51)

Due to Assumptions § - E, the dominated convergence theorem (e.g., Bartle, 1966, Corol-
lary 5.9) allows one to differentiate the integrand function in the identity [ f(y|z, ) fx ()
dz = 1, which yields the following identities for # in the interior of O:

Bl 0 = [ U0 4 ()a = [ stule0)5wl2.0)sx(w)dz =0,

and

Blm(z:0) = [ %j%a@lf(y\x,e>fx<x>dz 0.

In light of Assumption B, these identities evaluating at #y immediately imply that

b0(60) = E [9(Z:,00)) = / 9 (2.00) f (y] 2.00) fx () dz = 0. (52)

By Assumption H, functions [m(z,0)]* and s(y|x,0)s(y|x,0)" satisfy the conditions of
Lemma @, and so does s(y|z,0)m(z,0) by the Cauchy-Schwarz inequality.

62



Step 2 In this step, we will first establish a central limit theorem (CLT) for N~%/2 sz\;
(9(Z;,00) — dyy (60p)) under arbitrary sequence of DGP’s with ny — 0 as N — oo. Define a
function W, (2) := XN [g(2,60) — ¢,(00)], and let W, ;, := W, (Z;) for i = 1,..., N, where X is
a (g+1)-dimensional non-zero vector. By the definitions of ¢, (f) and V}, in (@) and (@), we
know that W, ; has mean zero and variance \’ 1_/77)\, which is positive for small 7 by Assump-
tion H and (@) For any § > 0, define the set A;, = {z W, (2)] > 6 (NXX_/,])\)I/Q}E
Note that Z; (i =1,..., N) are identically distributed, so for any 6 > 0, we have
N

)y [

_ Wil *h(Yi| X, 60, /) fx (Xi)dZ;
o1 (Wil 26(NNVpA)

1/2 |

=) [ WPt o)

Aé,n

5,m

< (V%) 2 DIAP (|¢n<eo>|2 | ata+ | b(z)a(z)dz); (53)

where the last inequality holds by Assumption B and the simple inequality that (a +b)? <
2(a* + b?) for any a,b € R. By (El) and (@), lim, 0 ¢,(6p) = 0. By (El), we have
lim, o NV,A = NV > 0, so A;, converges to an empty set as N — oo, implying
that limy_ 0 an,n a(z)dz = 0 and limy_;q an,n b(z)a(z)dz = 0. Therefore, (@) im-
plies that the Lindberg condition is satisfied, and by the Lindberg-Feller CLT (e.g.,
p.128 of Rag, [1971), we have (]\f)\"f/n/\)_l/2 Zfil W,.. = N(0,1), implying in turn that
N—1/2 ZZN:1 Wi = N(0, NV X). This, together with the Cramér-Wold device, implies that

for arbitrary sequence of DGP’s with ny — 0 as N — oo,

N
N~V (9(Zi, 60) = by (60)) = N(0,V).
i=1
Then, we apply this CLT to a particular sequence ny = N~%/? and get
N
N7V2Y " (9(Zi,00) = b2 (80)) = N(0,V). (54)

i=1

VLet Ay, =0 if NV,A < 0.
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Step 3 Due to Assumptions B - H and the dominated convergence theorem, we calculate
the derivative of [ g (z,60)h(y|z,00,n) fx (z) k (¢) dedz with respect to n as follows
0
55 ([ateo0 s @ [ Gleb0t e ke dea:)
6] x,0 eL
_ I J9(z60) fx (x) o1 (vl o ier) 3901+\/ﬁ )ek (e) dedz
2/
n=0

. L[ [ 9(2,60) fx (x) wek (¢) ded
= 111 )

n—0 n

Kp = (55)

n=0

Using the L’Hopital’s rule, we get

0 x,0 eL
4\1[ff9 z,00) fx (@) f(yla+l+ﬁ)ek (e) dedz
21 (ylz,00+y/7ee
Ko — im 22fff9290 fX()%er(e)dedz
R =

n—0

32 0
A + - hnl// z, 90 fX (y|x’ 0 + \/ﬁeb) €2k (e) dedz,

4 70 007
from which we obtain
// (2,600) fx (z 82 %Je’f 200) 21 () ded
_ _/ 2.00) fx () 2L (ge‘f ) g
=% [ocs y'm@@)/) L 1 (41,60 i (1) =
- JE{ e

where we recall 02 = [ ek (e)de. Recalling that g(z,0) = (m(z,0),s(z,0)") helps us
obtain the following:

E

Kp=2=

YA

B2 (Vi X:,00) /962
B s 1m0 S

Recall the definition of ¢,(#) in (@) and apply the mean value theorem to (@) with

K9

524 (Vi Xi.00) /007 \
F(YilXi,60) o2 | M
)l

1/2

ny = N7/ we get
Kp= Jim NV? ( / g (.00 fx(2) / 7 (vl2.00+ VNer) e (e) dedz ~ / g (=.00) f (=]60) dz)
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N—oo

= lim N/ (/9(2790) h <y\ , 0, v N71/2> fx(x)dz — /9(2700) h(ylx,0o,0) fX(iU)dz)
= lim N2 (G172 (Bo) = ¢o (o)) -

Combined with the CLT in (@), we see that this implies that v Ngy (6p) 2N (Kg, V),
where we define gy(0) .= N"' SN ¢(Z;, 9)@

Remark 10 We can in principle address heteroscedasticity as long as E[e|x] = 0 is

satisfied. This of course implies that Kgr should be redefined as

5 824 (VilX..00) /007 *
BB X — o

0% f(Y;]Xi,00) | 003 } ’

E{E[aﬂxi]smxmew o)

with corresponding changes in the following steps.

Step 4 We now show that NY/2 (0 — 6y) = — (DH) ™" DN'/2gy (6y)+0, (1), where D :=
[0,1,] and H := E[0g(Z;,6,)/ 00']. By the mean value theorem, we get N'/2gy (fy) =
NY2gy (60) + [(?gN (0']\;)/80'} N2 (9N — 00) for some Ay on the line segment connect-
ing Oy and 6y. By Assumptions Y and F, we know that h(y|x,v)fx(x) and the con-
stituent elements of dgy(0y)/00" satisfy the conditions of Lemma @, implying that
8gN(9N)/ 00" 2 E[dg(Z;,0,)/ 00'). This, combined with the standard v/N-consistency
of the MLE 0y, implies that N'2gy (6y) = N'2gx (65) + HN'? (O — 05) + 0, (1). Be-
cause the MLE satisfies 0 = Dgy (fy) by definition, it follows that 0 = DN2gy (6p) +
DHN'Y? 0y — 6y)+0, (1), from which we obtain N2 (O — 6y) = — (DH) ' DNY2gy (6)+
op (1).
By the definition of ¢g(z,6) and H, we note that

E |:8m(Zi,90)i| E |:8m(Zi,00):|

H— 06’ _ 00’
0s(Yi| Xi,00)
B |20 -7

30Note that gn(f) and g(z,6) here are different from those introduced before Lemma @ The former
are based on the specific functions m(z, ) and s(z,0) used discussed in this paper, while the latter are

generic notation used only to state Lemma @, i.e., Lemma A.1l in Newey ([1985).
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We now simplify the following coordinates of H,

[ Z }_ {% fYilXi,60) )

a bit. For this purpose, we start with the observation that

[ PF (4] x,0)] 08
’ ‘/ f (y[z.0)

for all #. Assumptions B - B and the dominated convergence theorem allow differentiating

f(ylz,0)dy

both sides with respect to 6 and getting

R Y IVEIL I 6F (y] 2,0/ 062 OF (y] 2,0)/ 06
0= Tiyee U 0y [ TOl0) 7 (g0

or

f(ylz,0)dy,

0—E [Q 32]‘(%!&,60)/89%} . [an(mXi,eo)/aef

a0 (Y| X, 00) (Y| X5, 00)
We therefore conclude that

B[ - [

5 (%] Xt

s (Vi Xz‘,@o)l = —HRa,

and hence
!

A

H =

Remark 11 Note that — (DH)™" = Z~'. Combined with N'?gy (6y) = N (Kg, V),
which implies that DNY2gy (6)) = N <%3K/27I>; we can see that N'/? (éN —00) =
N (U—EI*%Q,I*1>. Therefore, if ko = 0, the MLE is asymptotically unbiased even un-

der the alternative of random effects.

Step 5 We now establish the asymptotic distribution of my (éN). For this purpose,
we note that v Nmy (G_N) = LV/Ngn (51\/) for L := [I1,0]. We also saw in the previous
step that N'2gy (6x) = NYV2gx (60) + HNY? (O — o) + 0, (1), and NV2(Gy — 6,) =
—(DH) 'DN"2gx5(60) + 0,(1). Let sy(f) := N~V 32N | 5(Z;,6). Therefore, we see that

VNmy (Ox) = LV Ngn (n)
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= IV Ngy (60) — LH (DH) ™ DV/Ngy (65) + 0, (1)

= L (Iy1 — H(DH)™" D) VNgy (6p) + 0, (1)

= [1, 0] VNgy (60) — [1, 0] H (=Z) ™" VN (6p) + 0, (1)
=V Nmy (60) — K52V Nsy (6) + 0, (1)

= [1, =r5T 7] VNgw (60) + 0, (1),

while in Step 3 we showed v Ngy (g) = N (Kg, V). Because [I,, —k4Z |V [I}, —r4T7 Y] =

K1 — KhL 1Ko, it follows that
vV Nmy (éN) = LV Ngy (éN) =N ([1'1, —H’ZI’l} Kg, k1 — R’QI’l@) (56)

: : 71 _ o2 71
as desired, since [Iy, —k5Z 7| K = % (k1 — k51 'Ka).

B.3 Proof of Theorem @

The proof is essentially identical to the proof of Theorem B, except that we need to calculate
the counterpart of Kr in Step 3. We begin by considering the special case where the

neglected heterogeneity takes the form

X
f< <901+%(1/3,90,2,...,907(1)).

Note that there is no other random variable yet (such as *). We now would like to calculate

the counterpart of Kr. Due to Assumptions @, @, B and the dominated convergence

theorem, we have

o= o ([ 900 1 0) (b o)) )

/ of (y|=,0)
1
=F

2,0 ————u(x)dz

(2.00) i () ZLAL ),

(2,60)
where s1(y|x, ) is the first coordinate of the score function. By applying the mean value
12 as before, we get Kp = limy_oo N2 (¢n-1/2 (69) — b0 (6p)).

n=0

,00) s1(ylz,00) f (ylw,00) fx (x) p () dz

[<22760>31<Y|X1700) ( )]7

theorem with ny = N~
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Note that K can be written as

02 (YilXi,00) /963
Kp:=E vy 51 (Yil X, o) 1o (X3)

S (Yz‘ Xi790) S1 (Yz| Xi,90> 2 (Xz)

2 X 2
E{E {a f(Yz|Xz,90)/69181 (Y| X, 00)

f(Yi|X;,00)

Xz} It (Xi)}

E{E[s (Y] Xi,00) s1 (Yi] Xi,00)] Xi] p (X3)}

The rest of Newey ([1985)’s analysis still applies, in particular, (2.6) and (2.7) in Newey
(11985) hold Bl We therefore have (in his notation) Ly = L = [[1,0], D = [0,1,], P =
I,y —H (DH')_1 D, K = Kp, and we consider VN instead of vT. Because DH = —T,

Dg (2,60) = s (z,00), we still have (in our notation)
LV Ngy (Ox) = LPVNgy (6)) + 0, (1)
— L (Iyy1 — H(DH)™ D) VNgy (65) + 0, (1)
= [, 0]V Ngn (6y) — [, 0] H (=I)™' V/Nsy (6) + 0, (1)
=V Nmy (6) — kT 'V Nsy (6o) + 0, (1)
= [I, =57 VNgy (60) + 0, (1),

while

VNgn (6)) = N (Kp,V).

Because we still have
(1, —kAZ )V [, =T = kg — 64T ko,
it follows that
VNmy (Ox) = LVNgn (0x) = N ([, =k Kp, k1 — 6T s) (57)

We now consider the fixed effects (@) After all, the whole calculation of Kg was
based on the derivative of f (y| x, (90,1 +np(x) + /me, 0z, - .. ,6’07(1)) and note that the
derivative should be the sum of the derivatives of f (y|x, (61 + np (x), 602, ...,004)) and

3INewey| (1985)’s (2.6) is VT'Lrgr (0r) = LPVTgr (60) + 0, (1), and (2.7) is VTgr (60) = N (K6, V).
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flz, (Bop + /e, 602, . ..,004)). The asymptotic bias is then equal to the sum of two
asymptotic biases in (@) and (@)

\/N??’LN (éN) = L\/NQN (§N> =N ([Il, —HIQI_l] (KF + K]*%) , Rl — HIQI_llig) s

where

2
2 92 (Y| Xi,60) / 067
. E{E [(e1)] Xi] ( TV 60) ) }

02 f(Y;]X;,00) | 003
E{E[ |X] (Y;] X, 60) VIR }

is a heteroskedasticity-robust version of Kr based on €. (See Remark @)

B.4 Proof of Lemma @

First, we can see that the OLS B is not v/ N-consistent under the misspecification. In fact,

)

i=1 t=1

we have

]
]
<

N1/4 N1/4

12—,“ )/N1/4

Xi 5* «
o (“( ) + + X Bo +vlt>>



SO
NYH(B= ) = QA+ 0, (N12) 40, (N V) =@ A+ 0, (N4 (58)

Now we consider

'y @ (erelp — I7)]0 = Z Z 0510im.-

1=1 I;m=1,l#m

Since the OLS residual 0 = &/NYV4 + vy — X} <B — 50) with & = u(X;) + €, we have

N T
N1/2 Z Z Vi Dim = N1/2 Z Z

i=1 [;m=1,l#m 1=1 I,m=1,l#m

i=1 I;m=1,l#m
1 N T 5
2 */
TON1/2 Z Z N1/4 +U1m) X (ﬁ 50)
i=1 I;m=1,l#m

=) XiXin (B=50) . (59)

| N T
TN 2
Note that the first term in (@) can be rewritten as

L x T ¢ ¢,
N1/2 Z Z (N1/4 + U“) (N1/4 + Uim)

i=1 I;m=1,l#m

L T _1
=L 2 Vit Zf T ZlizZvd

i=1 I;m=1,l#m

— ﬁ Z Z Vv + T(T — 1) (E [&] + O, (N‘l/Q)) + O, (N~

i=1 I,m=1,l#m
| X T
= N2 Z Z Vi + T (T = 1) B [512} + Op(N_1/4)>
i=1 [,m=1,l#m
where we used the CLT for the second equality.
Now we show that the second term in (@) is O,(NY4).
| X T ¢
? */ A
N1/2 Z Z <N1/4 + U’Ll) sz (ﬁ - 60)
i=1 [;m=1,l#m
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LN ) L N A
:WZ Z UilX;%<ﬁ—5o>+WZ Z fiX;;%<ﬁ—ﬁo>

i=1 I;m=1,l#m i=1 I;m=1,l#m
2 ! 1 = d * 1/4 ( 4 (T -1 a d *
=(B-m) | g X wdin | +N (B p) | 26D Xin -
i=1 [;m=1,l#m =1 m=1
Because E [szﬂ#m vilem} =0, we can apply the CLT and conclude that N~1/2 Zf\il
fom:l#m vy X}, = Op(1). Combined with the result that N1/4 (B — ﬁo) = Q)+
O, (N7/*), we conclude that the first term on the far right-hand side is O, (N~'/*).
Noting that
T

1 N T
—— 2 G X, =(T-DE|&) X
=1 m=1 m=1

= (T =DE [(n(Xi) + &) (TX])] + O, (N77)
= T(T — V)E [X;u(X)] + O, (NT2) = T(T = )A + 0, (N~/?),

N—1/2>

we conclude that the second term on the far right-hand side is

N T
. (T -1
N1/ (5 _ 50) (T Z{i Z ij> =T(T-1DNQ'\+0, (N—1/4) )
i=1 m=1
Combined with (@), we should have that the second term in (@) is equal to —T'(T —
DNQ7'A+ O, (N~'/*). By the same argument, the third term in (@) is also —T(T —
HNQ'A+ 0, (N 1/ ) as the indices [ and m are symmetric in this respect.
Finally, by (@), the fourth term in (@) can be written as

1 S — /4 / i
Y > (B-6) xax (8- )

i=1 [im=1,l#m

_ N4 (B_60>/ (NZ Z leX*’> N/ (B—ﬁo)

i=1 I m=1,l#m

=(Q7N)'S(QN) + 0, (N7,

The result of the lemma follows by combining our analysis of each term of (@)

C Technical Details of Section @

This section makes the following additional assumption.
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: . 921 (Yar| X i ,00) [ 067 y Oln f( Y| Xir 60) | *
Assumption 8 (i) supi’tE{ f(iéthtm(;o{ 1} < oo; (ii) sup,, E {( £( 851 t 0)) } <

%1 f(¥it| Xir.,6)
0630600

2
Oln )/1 XZ 79
%‘ < M (Yit, Xut),

oo; (iii) there exists some function M (y,z) such that ‘ < M (Y, Xu),

93 1In f(Yit| Xar,60)
50,5050 ‘ <M (Yi, Xir),

and sup; ; E[M (Yy, Xi)] < oo.

2
9% In f(Yit| Xi1,0)
%’ <M (Y, Xi),

We first show that () is O, (1) as N,T — oco. The same argument shows that (@)
is also O, (1). First, we rewrite (@) as

T

zt’ tha 00)/ 892 1 8111 f zt| th; 90) aln f ( zt’l th’ 90)
\/_T Z Z zt| Xlty 90 \/_T Z Z 891 891

i=1 t=1 i=1 t,t/=1tAt
(60)

Note that the first term in (@) is a zero mean random variable, and conditional on the
Xs, it is a sum of random variables independent over i and t. Therefore, the first term in

(6d) is 0, (T-1/2).

. In £(Y,|X,07,00)
As for the second term in (@), we see that 37, 1At alnf(igélx” o) 9o /€ 5(;1 %) hag

mean equal to zero and its variance is equal to

ETZ o | (0] (Yel Xie00)\*| o | (0] (Ve X, 00) \?
801 801 ’
Lt/ =1,t#t

and therefore, the second term in (@) has mean equal to zero and variance equal to

1 L& AIn f (Yie| Xir,00)\” dln f (Y| X, 00)
NT2Z 2. E ( 96, ) ( 96, )

i=1 t,t/=1t£¢t
In order to establish that the noise of estimating 6, does not affect the distribution of

=0, (1).

the test statistic under the null, we first apply the second order mean value theorem to

(@), and obtain

1 iiaﬂnf(YiAXit,@n)Jr 1 i ZT:alnf(Yit|Xit79n) 2
NT 4 00 VNT = \ = 90,

2
1 PInf (Yl Xib0) 1 o= = 0ln f (Yie| Xit, 60)
= — +
ng i s (5

s
Il
i
-
—

t=1
T  02In f(Yit| Xit,00)
NT\F Zz IZ 96296’

Z T 9ln f(Yie| Xit,00) T  02%In f(Yi¢| Xst,00)
NT\F i=1 t=1 001 t=1 00,00’
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T O*Inf | Xi¢,0
2NfT2 Zz 1 Z 6(28;80'” &)

_ / T lnf(Yn\Xn 0) T 92 f(Yiel Xt 0) _
+ <\/NT (6, — 90)> +y7we it (Z 1T 0600 ( =17 o000 (\/NT (6, — 90))
1 N T Ol f(Yit|Xit,0) T 0% f(Vie|Xi1,0)
+N\/NT2 Zi:l t=1 0601 t=1 00106000’

for some § between 6, and 6,,.

Note that the last term above can be bounded from above by

2N\FT2 (Zz 1Zt M (Y, X )) JNT (6. 6, N
( wazz 1<Zt1 (Yie, X ))(Ztl (Yie, Xt ))) NT<9n (9)‘

(o (2) o () v -t

so we obtain that (@) can be rewritten as

1 N T

62lnf lt]Xit,G 1 N d alnf( n‘,’th;e)
T N T DI O

=1

1

=1 2
B ii@ﬂnf zt|th7€0) n 1 & Zalnf(}/;t|Xit’90)
NT t=1

i=1 t=1 07 \/NTil 96,

\/_
T  8%In f(Yit| Xit,00)
NTf ZZ 1 Z W A/ 7] —
+ 2 T Oln f(Yit| Xit,00) T 92In f(Yit| Xit,00) NT (Qn 00) * o (1) ‘
5o Zi:l t=1"_ 90, =1 90:90"

06100’

(61)

We now show that the third term in (@) is 0, (1). First, we have

O®In f (Yi| Xit, 0o) 1 1
‘NT\/_Z (Z 06200 )‘ < JT (NTZZM(Y;“X“)) =0, (1).

=1 t=1

Second, we have

1 AIn f (Y| Xir, 00) \ [ 1 o= 02In f (Y| Xsz, 00)
1 ( \/—Z 0, ) (T; 00,00 >
N1 dIn f (Y| X, 6o) 821n f (Yie| Xir, o)
2 (fz 90, E| |
)

2

Mz

7

ZIM

1
£ 06,00

N
2 1 6'hlf zt|Xit700 1

i=1

~+

=l
HMH

1

M=

— 00,00 060,00

(a? In f (Yal X, 00) [02 1nf(yit|Xit,eo)D>
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which we further write as

ZZ 8hlf }/;t|th>‘90 ZE (921nf( zt’let’ 00)

pariv 00, T 00,06’
ZZ 8lﬂf zt|Xit>00) 52111f( it|Xit>00) _E 0? lnf(Yit|Xit,90)

NT\/_ — 90, 96,00’ 96,00’

T

Z Z Oln f Y;t‘Xmeo) 321nf( nV‘th’ 90) _E a2lnf(Y;t”Xit’;‘90)
NT\/_ P 891 89180’ 89189/ ’

(62)

The first term of (@) has mean zero and variance equal to

2
4 L Ol f (Y| Xir, 00)\ 2| (1 = . [0*Inf (Y| Xsv, 00)
s e ( ) TZE{ ot

0
i=1 t=1 96, =1

e e

=1 t=1

so it should be o, (1). As for the second term of (@), we have
ZZ dln f th|Xit790) (aQIHf(Yit\Xit,eo) _E [5’2 hlf(Y%t’Xit,@o)})
NT\/_ — = 06, 06,00 06,00’

2 8lnf( it|Xit790) 0? lﬂf(Yz‘t|Xz‘t7Q0) 0? 111f(Yit|Xit,90)
< = _
= 7wk H 90, 90,00" E 00,00"

8lnf (th| Xm 90)
00,

0%In f (Yiel Xit, 00) 2|2 In f (Yie| Xit, 60)
06,00' 96,00'

9 2
< —su FE FE
JT it

—0(112),
so it should be o, (1). As for the third term of (@) we note that conditional on Xs, it can
dn f(Yir| Xit,00) <62 In /(Y| Xppr.00) _ [62 In f(Yipr [ X, emD

|

. T
be viewed as a sum of D, .,

001 00100’ 00100’

which are independent over i. Therefore, it has mean zero and variance equal to

1 f)Var i Oln f (Yl Xu,00) (0*In f (Yirl Xur,00) _ 1 [0*Inf (Ve Xiw 00) T\ )
N2T3 =1 tt’ ]_t;ét’ 801 80180, 80160/

By a similar reasoning, we can see that for t # t/,

81nf(Y,~t|Xit,90) (62 lIlf(Y;t/|Xit/,(90) . E [821nf(Y;t/|Xit/,00)}>

00, 060,00 00,00
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has mean equal to zero and the variance uniformly bounded over ¢ and ¢t. Therefore, we

can conclude that the variance of

T

Z alnf(yit|Xit700) (a2lnf(yz't/|Xit',90) E 821nf<Y;t’|Xit’780):|)

06, 90,00’ a 00,00

=184t

is of order T°.
This implies that the third term of (@) has mean zero and variance of order O (N71),
so it should be o, (1).
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