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1 Introduction

Econometric analysis of dyadic data can be complicated under the presence of unobserved

individual effects. If such effects are neglected, it would in general lead to inconsistency

of standard estimators such as MLE. This is due to the fact that neglecting unobserved

effects generally leads to model misspecification. It is also partly related to the well-known

incidental parameter problem in panel data analysis. There do exist versions of dyadic

models where standard estimators remain consistent even when unobserved effects are

neglected. However, the presence of unobserved effects in the data affects the rate of

convergence of standard estimators in a negative way, and the rate of convergence may

be slower than what is expected for standard estimators.1 As such, standard errors based

on the presumption that the unobserved effects are present are too conservative if the

unobserved effects are in fact absent.

For these reasons, it would be pragmatically useful to examine whether there are any

neglected individual effects in dyadic regression models. This paper makes a contribution

in this regard by developing a convenient statistical test of neglected heterogenous effects

(even after controlling for observed dyadic specific explanatory variables), which is done

by modifying Breusch and Pagan (1980)’s test (BP test hereafter). The BP test is a

Lagrange Multiplier (LM) test originally developed for panel data analysis to deal with

both individual and time effects, but the version of the BP test for detecting only the

individual effects seems to have received the most attention.2 From the viewpoint of

dyadic regression models, the most convenient feature of the BP test is perhaps that it is

an LM test, and as such, it requires calculation of the parameter estimates only under the

null of no unobserved heterogeneity.3 This feature simplifies the computation and makes it

pragmatically very attractive, as the computational problem disappears due to the absence

of unobserved heterogeneity under the null.

1Examples include Graham (2020) and Menzel (2017).
2Such a version of the BP test can be interpreted to be a test of overdispersion Cox (1983), and it

is related to White (1982)’s information matrix test, as was pointed out by Chesher (1984). See also

Lancaster (1984) for the asymptotic distribution of the test under the null.
3See also Engle (1984).
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The LM test in dyadic models turns out to be very similar to the sum of the two BP

test statistics in panel regressions, one for detection of individual effects and the other for

detection of time effects. Therefore, the asymptotic properties of our modified BP test can

be characterized by deriving the joint distribution of the two BP test statistics. Honda

(1985) analyzed the asymptotic size of the two BP test statistics for linear panel regression

models. Therefore, in principle, the asymptotic analysis of our test statistics would simply

require nonlinear generalization of Honda (1985)’s argument. Unfortunately, we found

that some of the arguments in Honda (1985)’s proof is incorrect. It turns out to be quite

challenging to correct Honda (1985)’s proof. We overcome the problem by approximating

the test statistics with a novel martingale that we construct in the appendix, which we

consider to be an important contribution of the paper.

Our endeavor produced a few interesting by-products that are of independent interest in

themselves. In addition to characterizing the asymptotic null distribution of the modified

BP test in both dyadic regressions and panel regressions, we address the question of power

of the BP test in generic panel models.4 To our knowledge, Honda (1985) is the only one

who analyzed the asymptotic power of the BP test, and he did so against random effects

in linear models.

In this paper, we make significant progress over Honda (1985) in two dimensions. First,

we derive the asymptotic power of the BP test against random effects in general nonlinear

models. Second, which is more important, we also consider the power of the BP test against

the alternative of fixed effects. By fixed effects, we mean the type of general unobserved

variables that may have arbitrary dependence structure with the observed explanatory

variables.5 The BP test was specifically designed to detect the alternative of random

effects, as is clear in the derivation by Breusch and Pagan (1980) or Chesher (1984). The

random effects are by assumption independent of all the observable explanatory variables,

so such an alternative may be argued to be restrictive.6 Our paper fills this gap in the

4Throughout this paper, the power is defined to be the local power.
5Chamberlain (1984) called such a variable the correlated random effects.
6If the more general alternative of fixed effects is to be considered, one may adopt a version of the

conditional moment restrictions test, as discussed in Hahn et al. (2017).
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literature and analyzes the local power of the BP test against the general alternative of

fixed effects. Modifying Newey (1985)’s argument,7 we obtain the asymptotic results,

based on which we argue that the BP test in general has a power against the fixed effects.8

We also derive the convenient implication that it is unnecessary to adjust for noise in

estimation of MLE in two-way models (for characterization of the asymptotic distribution

under the null hypothesis) under the asymptotics where both the cross sectional dimension

(N) and the time series dimension (T ) grow to infinity. This has a convenient implication

in the application to dyadic models, but may superficially appear to contradict Lancaster

(1984)’s result, which implies that such an adjustment is necessary. We explain that the

difference can be explained by the fact that Lancaster (1984)’s analysis was on fixed T

and N → ∞ asymptotics.

We recognize that a specification test of the type analyzed in the paper is often as-

sociated with the pre-test bias in the usual cross sectional analysis, and we expect the

same issue with uniformity in the application to the dyadic/panel data analysis. This is a

generic problem for which we are unable to offer a general solution.

The paper is organized as follows. Our results for dyadic models are in Section 2.

Section 3 presents results for local power of the BP test in nonlinear panel models. Section

4 presents an argument for why the asymptotic distribution under the null does not need

to adjust for noise of estimation of MLE. Finite sample sizes and powers of the LM test

in a nonlinear dyadic regression model are in Section 5. Section 6 concludes.

7The regularity conditions in Newey (1985) make it easy to obtain results along the line of Le Cam’s

Third Lemma.
8To be more precise, we show that the probability of rejection is higher under the alternative than

under the null, i.e., we show that the BP test is locally unbiased.
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2 Test of Neglected Heterogeneity in Dyadic Regres-

sion Models

In this section, we formulate the null hypothesis of no neglected heterogeneity in dyadic

regression frameworks for either directed or undirected dyadic observations, and derive

the limiting distributions of the test statistics under the null hypothesis. We also make a

connection to the classical BP test against one-way and two-way error component panel

data models.

Suppose that N := {1, ..., N} is the set of sample agents. A pair of two different agents

constitute a dyad, (i, j) ∈ N ×N with i ̸= j. Let (Yij, Xij) denote dyadic observations.

Undirected Dyadic Regression. Suppose that dyadic observations (Yij, Xij) are undi-

rected, that is, (Yij, Xij) = (Yji, Xji) for i, j ∈ N with i ̸= j. The random effects likelihood

of typical undirected dyadic regression models has a generic representation,∫
· · ·
∫ N−1∏

i=1

N∏
j>i

f (yij|xij, θ0 + eiι+ ejι) k (e1) · · · k (eN) de1 . . . deN . (1)

Here, f (yij|xij, θ0 + εiι+ εjι) denotes the marginal likelihood of yij given the observed

explanatory variables xij as well as unobserved heterogenous effects εi and εj. The ι is a

vector of the same dimension as the parameter of interest θ0, where the first coordinate

is equal to 1 and the rest are 0. Equation (1) captures the gist of the linear model of the

form Yij = X ′
ijθ0 + εi + εj + vij (but not limited to the linear model), where we assume

that the first component of Xij is 1 (i.e., the intercept term), and we understand εs as

representing the heterogeneity of the first component of θ0. (More detailed discussion on

the modeling is presented in the one-way error component model.) The density f ( ·| ·) is

then derived from the density of vij. Finally, the εs are assumed to be independent and

identically distributed with density k (·), which gives rise to the above joint density.

In order to simplify the notation a bit, we rewrite the joint density in (1) as

Eε

[
N−1∏
i=1

N∏
j>i

f(yij|xij, θ0 + εiι+ εjι)

]
,
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where Eε [·] denotes the expectation with respect to the εs, fixing everything else constant.

The LM test of overdispersion can be understood to be a test against the alternative

where the density k (·) is very close to zero, loosely speaking. This is given a more rigorous

meaning by considering the alternative parameterization indexed by a scale parameter η,

h (y|x, θ0,
√
η) := Eε

[
N−1∏
i=1

N∏
j>i

f (yij|xij, θ0 +
√
ηεiι+

√
ηεjι)

]
,

where the density of εs is fixed, and we test the null hypothesis that the scale parameter

is zero, i.e.,

H0 : η = 0. (2)

Directed Dyadic Regression If the dyadic observations (Yij, Xij) are directed so that

(Yij, Xij) ̸= (Yji, Xji) for i, j ∈ N with i ̸= j in general, the likelihood of typical directed

dyadic regression models has a generic representation,∫
· · ·
∫ N∏

i=1

N∏
j ̸=i

f (yij|xij, θ0 + eiι+ ejι)× k1 (e1) · · · k1 (eN) de1 . . . deN

:= Eε

[
N∏
i=1

N∏
j ̸=i

f(yij|xij, θ0 + εiι+ εjι)

]
, (3)

where εi and εj are unobserved effects of “out” agent i and “in” agent j, respectively.

Like in the undirected case, we reparameterize the likelihood as

h (y|x, θ0,
√
η) := Eε

[
N∏
i=1

N∏
j ̸=i

f (yij|xij, θ0 +
√
ηεiι+

√
ηεjι)

]

and test

H0 : η = 0. (4)

2.1 LM Test of Neglected Heterogeneity in Directed Dyadic Re-

gression Models

The LM test of the null hypothesis (4) is based on the score function with the parameter

estimate under the null restriction. To derive the LM test statistic in the directed dyadic
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regression, first we consider the first order derivative of the likelihood function with respect

to the parameter η. Define

h̄ (y|x, θ0,
√
η1,

√
η2) := Eε

[
N∏
i=1

N∏
j ̸=i

f (yij|xij, θ0 +
√
η1εiι+

√
η2εjι)

]
.

Then, by definition, we have

∂h
(
y|x, θ0,

√
η
)

∂η

∣∣∣∣∣
η=0

=
h̄
(
y|x, θ0,

√
η1, 0

)
∂η1

∣∣∣∣∣
η1=0

+
∂h̄
(
y|x, θ0, 0,

√
η2
)

∂η2

∣∣∣∣∣
η2=0

. (5)

To proceed with (5), we take a detour and relate the two terms in (5) to the BP test

statistic for overdispersion in one-way error component panel models.

2.1.1 Review of the BP Test in One-Way Error Component Panel Regression

Models

We will consider the panel model with possible unobserved individual heterogeneity and

present the LM test to detect neglected heterogeneity. For a one-way error component

panel model, this is largely a review of Breusch and Pagan (1980) as well as Chesher

(1984). Assume that we observe a random sample (Yi, Xi), i = 1, . . . , N . Yi and Xi can be

vectors. In the panel data analysis where each individual is observed over T time periods,

we will have Yi = (Yi1, . . . , YiT ) and Xi = (X ′
i1, . . . , X

′
iT )

′. Note that the first component

of Xit be 1 (the intercept). We let X∗
it denotes Xit excluding the intercept and define X∗

i

accordingly. We assume that the conditional density of Yi given Xi is given by the function

f (y|x, θ), where θ is a q-dimensional parameter that characterizes the density. Under the

null hypothesis, the first component θ1 of θ is fixed at θ0,1, but under the alternative

hypothesis, it may be a random variable indexed by i. This is motivated by the linear

model with one-way error component

Yit = X∗′
it β + αi + vit, i = 1, . . . , N, t = 1, . . . , T,

where αi denotes the unobserved individual heterogeneity. Suppose that vit ∼ N (0, σ2
v) is

independent of (X∗′
i , αi), and is independent over i and t. We can then understand that
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the parameter θ = (αi, β, σ
2
v)

′
may be different across different individuals. Note that we

assume that only the first component θ1 of θ is allowed to be different across i, i.e., scalar

random (or fixed) effects.9 The heterogeneity of the first component θ1 of θ can be modeled

as θ0,1 plus a random variable εi. Under the random effects specification, the heterogeneity

is independent of Xi, and therefore the conditional density of the heterogeneity given

Xi = x is equal to the marginal density. Under the random effects approach, it is also

common to assume that the expectation of the heterogeneity is zero. In order to accentuate

the local nature of the alternative, we may choose to write θ1,i = θ0,1+ηεi, where E [εi] = 0

and η ≥ 0 is a “small” number and the conditional density of εi given Xi = xi is k (·). The

conditional density of Yi given Xi = xi and εi = ei is then equal to f (yi|xi, θ0 + ηeiι) =

f (yi|xi, (θ0,1 + ηei, θ0,2, . . . , θ0,q)). It follows that the conditional density of Yi given Xi =

xi is

h (yi|xi, θ0, η) := Eε [f (yi|xi, θ0 + ηεiι)] ,

where the expectation is taken with respect to the distribution of ε. Note that h (yi|xi, θ, 0) =

f (yi|xi, θ). We consider the second order Taylor series expansion of h (yi|xi, θ, η) with

respect to η around (θ, η) = (θ0, 0).

Under the assumption that we can exchange differentiation and integration, we obtain

∂h (yi|xi, θ0, η)

∂η

∣∣∣∣
η=0

= Eε

[
∂f (yi|xi, θ0)

∂θ1
εi

]
=

∂f (yi|xi, θ0)

∂θ1
E [εi] = 0,

∂2h (yi|xi, θ0, η)

∂η2

∣∣∣∣
η=0

= Eε

[
∂2f (yi|xi, θ0)

∂θ21
ε2i

]
=

∂2f (yi|xi, θ0)

∂θ21
E
[
ε2i
]
. (6)

Therefore, we have

h (yi|xi, θ0, η) = h (yi|xi, θ0, 0) +
η2

2

∂2f (yi|xi, θ0)

∂θ21
σ2
ε + o

(
η2
)
,

where σ2
ε = E [ε2i ]. Given the form of the expansion, it would make sense to consider the

parameterization h
(
yi|xi, θ0,

√
η
)
instead (i.e., Eε

[
f
(
yi|xi, θ0 +

√
ηεiι

)]
), which delivers

9There is no reason that the LM test should be confined to the scalar effects, as is evident from

Chesher (1984)’s derivation. On the other hand, the scalar effects are a common feature in many panel

data analysis, and were the basis of the LM test as was presented in Breusch and Pagan (1980).
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the expansion10

h (yi|xi, θ0,
√
η) = h (yi|xi, θ0, 0) +

η

2

∂2f (yi|xi, θ0)

∂θ21
σ2
ε + o (η) .

This implies that

∂h
(
yi|xi, θ0,

√
η
)

∂η

∣∣∣∣∣
η=0

= lim
η→0

h
(
yi|xi, θ0,

√
η
)
− h (yi|xi, θ0, 0)

η
=

1

2

∂2f (yi|xi, θ0)

∂θ21
σ2
ε . (7)

Now, we consider the joint conditional density of the entire data

h (y|x, θ0, η) := Eε

[
N∏
i=1

f (yi|xi, θ0 + ηεiι)

]
,

and consider the form of the LM test statistic. It is straightforward to show that

∂h (y|x, θ0, η)
∂η

∣∣∣∣
η=0

= 0,
∂2h (y|x, θ0, η)

∂η2

∣∣∣∣
η=0

=
N∏
j=1

f (yj|xj, θ0)

(
N∑
i=1

∂2f (yi|xi, θ0) /∂θ
2
1

f (yi|xi, θ0)

)
σ2
ε .

Therefore, it follows from a similar Taylor expansion argument that in the random effect

one-way error component panel model (not necessarily linear), the LM test can be based

on the score

∂h
(
y|x, θ0,

√
η
)
/∂η

h (y|x, θ0, 0)

∣∣∣∣∣
η=0

=
1

2

(
N∑
i=1

∂2f (yi|xi, θ0) /∂θ
2
1

f (yi|xi, θ0)

)
σ2
ε ,

or equivalently based on 11

BP1way :=
1√
NT

N∑
i=1

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1√
NT

N∑
i=1

(
T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

. (8)

BP1way is the same as the statistic in (12) below, and Appendix C gives the justification

of the normalization by
√
NT .

10Chesher (1984) directly worked with h
(
y|x, θ0,

√
η
)
and applied L’Hôpital’s rule. The Taylor expan-

sion adopted here makes it easier to understand the role of the zero mean assumption, i.e., E [εi] = 0.

11Because
∑T

t=1
∂2 ln f(Yit|Xit,θ0)

∂θ2
1

+
(∑T

t=1
∂ ln f(Yit|Xit,θ0)

∂θ1

)2
has a zero expectation under correct spec-

ification, the LM statistic in (8) has the information matrix test interpretation. See Chesher (1984).
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2.1.2 Back to the LM Test of Neglected Heterogeneity in Directed Dyadic

Regression Models

We now get back to (5),

∂h
(
y|x, θ0,

√
η
)

∂η

∣∣∣∣∣
η=0

=
h̄
(
y|x, θ0,

√
η1, 0

)
∂η1

∣∣∣∣∣
η1=0

+
∂h̄
(
y|x, θ0, 0,

√
η2
)

∂η2

∣∣∣∣∣
η2=0

= I + II, say.

Notice that the terms I and II correspond to the scores of the one-way error component

panel regression model. Therefore, in view of (8), we deduce that the LM test statistic of

the null hypothesis (4) in the directed dyadic regression model is the sum of

1√
NN

N∑
i=1

N∑
j ̸=i

∂2 ln f (Yij|Xij, θ0)

∂θ21
+

1√
NN

N∑
i=1

(
N∑
j ̸=i

∂ ln f (Yij|Xij, θ0)

∂θ1

)2

(9)

and

1√
NN

N∑
j=1

N∑
i ̸=j

∂2 ln f (Yij|Xij, θ0)

∂θ21
+

1√
NN

N∑
j=1

(
N∑
i ̸=j

∂ ln f (Yij|Xij, θ0)

∂θ1

)2

; (10)

that is,

LMd := (9) + (10). (11)

2.1.3 Comparison with the BP test in Two-Way Error Component Panel

Regression Models

Notice that the directed dyadic regression model (3) and a two-way error component panel

model are similar. A widely applied two-way error component panel regression model

includes both individual and time effects as

Yit = X∗′
it β + αi + γt + vit, i = 1, . . . , N, t = 1, . . . , T.

Compared to (3), the two-way panel model pairs cross-section indexed by i and time series

indexed by t. The dimensions of cross section (N) and time series (T ) are different in

general, and if the panel is balanced, we observe all the pairs (Yit, Xit). Similar to the
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one-way panel model, we can understand that θ = (αi + γt, β, σ
2
v). The heterogeneity of

the first component θ1 of θ can then be modeled as θ0,1 plus a random variable ε1i that

differs across i, as well as another random variable ε2t that varies over t. If we assume

that the joint conditional density of all Yit given all Xit, ε1i and ε2t is

h̄ (y|x, θ0, η1, η2) := Eε

[
N∏
i=1

T∏
t=1

f (yit|xit, θ0 + η1ε1iι+ η2ε2tι)

]
,

then we recognize that the BP test statistic can be obtained by separately differentiating

with respect to η1 and η2. This implies that the BP test statistic for two-way error

components is a two-dimensional vector, with the first component being BP1way defined

in (8)

1√
NT

N∑
i=1

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1√
NT

N∑
i=1

(
T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

(12)

and the second component being the counterpart of BP1way when the alternative one-way

model under consideration contains only time effects

1

N
√
T

T∑
t=1

N∑
i=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1

N
√
T

T∑
t=1

(
N∑
i=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

. (13)

That is,

BP2way := ((12), (13))′. (14)

See Appendix C for justification of the normalization by
√
NT and N

√
T . Therefore, our

test statistic LMd for the dyadic model in (11) is almost equal to the sum of the two

components of BP2way for the special case N = T .12

2.1.4 Asymptotic Distribution of the LM test statistic LMd in (11)

In this subsection, we discuss how to establish the asymptotic theory of the LM test

statistic LMd in (11). Comparing LMd in the directed dyadic regression model and the

12By the same token, a directed dyadic model where each individual has two fixed effects (e.g., each

country has an exporter effect εi1 and an importer effect εi2) is mathematically identical to the panel model

with time and individual fixed effects, with N = T and the i = t observations excluded. Alternatively,

one can think of a particular form of heterogeneity εi = I{exporter}i ∗ εi1 + I{importer}i ∗ εi2, and our

analysis in this paper remains unchanged.
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sum of the two components of the traditional BP test statistic BP2way in (14) in the two-

way error component panel model, we find that the two are almost equal to each other,

except that LMd only considers the i ̸= j terms (i.e., the i ̸= t terms in the panel model)

with N = T .

The traditional BP test in the two-way error component linear panel regression model

was first proposed by Breusch and Pagan (1980), and then subsequently Honda (1985)

derived the asymptotic distribution of the test statistic. Given these existing studies and

the closeness between the two test statistics mentioned above, one may think that the

asymptotic null distribution of the LM test statistic (11) can be easily derived using the

result in Honda (1985)’s. Unfortunately, it is not the case.

The problem with Honda (1985)’s analysis is that in proving the joint asymptotic

distribution of (12) and (13), or more precisely the counterparts of (12) and (13) in linear

models, Honda (1985, Lemma 2) asserts that if two uncorrelated sequences of random

variables both converge to normal distributions, then they jointly converge to a bivariate

normal distribution. This argument is incorrect.13 Fortunately, his result can be saved,

although it turned out to be quite challenging. In the rest of this subsection, we will

present a correct argument for the asymptotic independence by using a novel martingale

construction and applying a martingale central limit theorem.

To make the discussion above concrete, it is convenient to rewrite the statistic in (12)

as

1√
NT

N∑
i=1

(
T∑
t=1

(
∂2 ln f (Yit|Xit, θ0)

∂θ21
+

(
∂ ln f (Yit|Xit, θ0)

∂θ1

)2
))

+
1√
NT

N∑
i=1

T∑
t,s=1,t̸=s

∂ ln f (Yit|Xit, θ0)

∂θ1

∂ ln f (Yis|Xis, θ0)

∂θ1
. (15)

Under the null, because ∂2 ln f(Yit|Xit,θ0)

∂θ21
+
(

∂ ln f(Yit|Xit,θ0)
∂θ1

)2
is independent over i and t with

mean zero, the first term in (15) has mean zero and variance of order 1
NT 2O (NT ) =

O (T−1). Therefore, the statistic in (12) is asymptotically equivalent to the second term

1√
NT

∑N
i=1

∑T
t,s=1,t ̸=s

∂ ln f(Yit|Xit,θ0)
∂θ1

∂ ln f(Yis|Xis,θ0)
∂θ1

in (15) under the null. Likewise, the statis-

13See Kuersteiner and Prucha (2013)’s Example 1 for related discussion.
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tic in (13) is asymptotically equivalent to 1
N
√
T

∑T
t=1

∑N
i,j=1,i ̸=j

∂ ln f(Yit|Xit,θ0)
∂θ1

∂ ln f(Yjt|Xjt,θ0)

∂θ1

under the null.

For simplicity of notation, let Uit denote
∂ ln f(Yit|Xit,θ0)

∂θ1
for i = 1, . . . , N and t = 1, . . . , T .

So, our objective is to analyze the joint asymptotic distribution of 1√
NT

∑N
i=1

∑T
t,s=1,t ̸=s UitUis

and 1
N
√
T

∑N
i,j=1,i ̸=j

∑T
t=1 UitUjt. Honda (1985) argued that these two statistics are uncor-

related, and drew the conclusion that they are asymptotically independent, which is the

mistake that we will fix by constructing a novel martingale structure.14

We use the Cramér-Wold theorem and define

ANT := ϱ
1√
NN

N∑
i=1

T∑
t,s=1,t ̸=s

UitUis +
1

N
√
N

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt. (16)

Without loss of generality, we will assume that |ϱ| < ∞. The |ϱ| = ∞ case is where we

are only interested in the marginal distribution of 1√
NN

∑N
i=1

∑T
t,s=1,t̸=s UitUis, which can

be established using symmetry by considering the ϱ = 0 case.15

Lemma 1 Suppose that Uit are iid16 with variance σ2
U and a finite fourth moment across

i, t. Suppose that N, T → ∞ with N
T
→ κ and 0 < κ < ∞. We then have

ANT ⇒ N

(
0, 2

(
1

κ
+

ϱ2

κ2

)
σ4
U

)
.

Proof. In Appendix A.2.

Lemma 2 Suppose that Uit are iid with variance σ2
U and a finite fourth moment across

i, t. Suppose that N, T → ∞ with N
T
→ κ and 0 < κ < ∞. We then have 1

N
√
T

∑N
i,j=1,i ̸=j

∑T
t=1 UitUjt

1√
NT

∑N
i=1

∑T
t,s=1,t ̸=s UitUis

⇒ N

 0

0

 ,

 2σ4
U 0

0 2σ4
U

 .

14The construction is technical in nature, and can be found in Appendix A.1.
15The two cases ϱ = 0 and |ϱ| = ∞ correspond to the first half of Lemma 2 in Honda (1985), which

was correctly proven.
16The iid assumption will be satisfied if (Xi,t, Yi,t) are iid. The iid assumption is sufficient but not

necessary for validity of our martingale structure, which is a crucial component in our proof. As long as

Xs are strictly exogenous, the martingale will continue to be valid, so we do not need that (Xi,t, Yi,t) are

iid. On the other hand, the iid assumption facilitates other technical analysis, which will be complicated

when the iid assumption is violated.

13



Proof. In Appendix A.3.

Comparison between the two statistics in Lemma 2 (for the directed dyadic model if

N = T ) and the two statistics in (12) and (13) for the panel model suggests that the

only difference between them is that the test statistics for the directed dyadic model only

considers the i ̸= j terms (i.e., the i ̸= t terms in the panel model). It turns out to be

the case that the deletion of the (i, i) observations has an asymptotically negligible effect.

This is formally summarized in the following theorem, which is our main result for the

directed dyadic model.

Theorem 1 Suppose that Uij are iid with variance σ2
U and a finite fourth moment across

i, j. We then have

LMd ⇒ N
(
0, 4σ4

U

)
.

Proof. In Appendix A.4.

Remark 1 The analysis in Section 4 implies that the result in Theorem 1 carries over

to the feasible version of LMd where θ0 is estimated. To be more precise, let σ̂2
U and θ̄N

denote a consistent estimator of σ2
U and the MLE of θ0, then we have

(
lN(θ̄N)

)2
/4σ̂4

U ⇒ χ2
1

under the null hypothesis of no unobserved heterogeneity, where

l1N(θ̄N) :=
1√
NN

N∑
i=1

N∑
j ̸=i

∂2 ln f
(
Yij|Xij, θ̄N

)
∂θ21

+
1√
NN

N∑
i=1

(
N∑
j ̸=i

∂ ln f
(
Yij|Xij, θ̄N

)
∂θ1

)2

,

l2N(θ̄N) :=
1√
NN

N∑
j=1

N∑
i ̸=j

∂2 ln f
(
Yij|Xij, θ̄N

)
∂θ21

+
1√
NN

N∑
j=1

(
N∑
i ̸=j

∂ ln f
(
Yij|Xij, θ̄N

)
∂θ1

)2

.

and lN(θ̄N) := l1N(θ̄N) + l2N(θ̄N).

2.2 LM Test of Neglected Heterogeneity in Undirected Dyadic

Regression Models

For undirected dyadic regression, Yij = Yji and Xij = Xji, and we can write the joint

conditional density of all Yij given all Xij and εi as

h̄ (y|x, θ0,
√
η1, . . . ,

√
ηN) := Eε

[
N−1∏
i=1

N∏
j>i

f
(
yi,j|xi,j, θ0 +

√
ηiεiι+

√
ηjεjι

)]
.

14



Similar to the derivation of (5) and (11), we recognize that the LM test statistic can be

obtained by taking separate first order differentiation with respect to η1 . . . ηN and then

adding them together. In particular, we see that our LM test statistic would be

LMud :=
1

N
√
N

N∑
i=1

 N∑
j ̸=i

∂2 ln f (Yij|Xij, θ0)

∂θ21
+

(
N∑
j ̸=i

∂ ln f (Yij|Xij, θ0)

∂θ1

)2
 , (17)

which is almost identical to the BP test statistic in the one-way error component panel

model, as shown in (8), except that we are using j instead of t and excluding the terms

where i = j. Because Yij = Yji, the martingale needs to be constructed more carefully.

For this purpose, we rewrite the statistic in (17) as

LMud =
2

N
√
N

N∑
i=1

N∑
j>i

(
∂2 ln f (Yij|Xij, θ0)

∂θ21
+

(
∂ ln f (Yij|Xij, θ0)

∂θ1

)2
)

+
1

N
√
N

N∑
i=1

(
N∑
j ̸=i

∂ ln f (Yij|Xij, θ0)

∂θ1

(
N∑

j′ ̸=i,j′ ̸=j

∂ ln f (Yij′|Xij′ , θ0)

∂θ1

))

The first term on the right is a sum of N (N − 1) /2 iid random variables with zero mean

under the null, so its variance is of order
(

1
N
√
N

)2
O (N (N − 1)) = o (1). Therefore, the

test statistic is asymptotically equivalent to the second term under the null; that is

LMud =
1

N
√
N

N∑
i=1

(
N∑
j ̸=i

∂ ln f (Yij|Xij, θ0)

∂θ1

(
N∑

j′ ̸=i,j′ ̸=j

∂ ln f (Yij′ |Xij′ , θ0)

∂θ1

))
+ op(1).

(18)

We let Uij =
∂ ln f(Yij |Xij ,θ0)

∂θ1
as before if i ̸= j, and define Uij = 0 if i = j. We then write

the main term in (18) as

AN =
1

N
√
N

N∑
i=1

N∑
j,j′=1,j ̸=j′

UijUij′ ,

so it superficially resembles ANT , the term that we analyzed in Lemma 1, except that

Uij = Uji in the current setup.

Lemma 3 Suppose Uij are iid with variance σ2
U and a finite fourth moment across i, j

(i ̸= j). We then have

AN ⇒ N
(
0, 2σ4

U

)
.
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Proof. In Appendix A.5.

Then, from (18), we have the following theorem.

Theorem 2 Suppose Uij are iid with variance σ2
U and a finite fourth moment across i, j

(i ̸= j). We then have

LMud ⇒ N
(
0, 2σ4

U

)
.

3 Power of the BP Test

We now analyze the power aspect of the LM test. Given that the LM test statistic in

dyadic models is asymptotically equivalent to the sum of two components (12) and (13) of

the traditional BP test statistic in panel models with two-way error components and that

(12) equals BP1way defined in (8), it suffices to consider the power properties of BP1way,

the BP test statistic in panel models with one-way error components.17 So, in this section,

we focus on the analysis of the power of the BP test in generic one-way error component

panel models. In order to understand the power properties better, we adopt the fixed

T approach. After all, with large T , the power cannot decrease. We consider two kinds

of alternatives. First, we consider the random effects, where the individual effects are

assumed to be independent of the explanatory variable X. The derivation in (6) shows

that the LM test was motivated by the random effects assumption, since the density of ε

there does not depend on X. Second, we consider the fixed effects, where the conditional

distribution of the individual effects on the explanatory variable X may depend on the

realization of X. If we allow arbitrary conditional density k ( ·|x) of εi given Xi = xi,

which is appropriate under the fixed effects specification, we would change the derivation

17Lemma 2 shows that (12) and (13), the two components of BP2way, are asymptotically independent.

The two components of LMd, (9) and (10), therefore, are also asymptotically independent as shown in

the proof of Theorem 1. Since their asymptotic distributions are contiguous (verified but not shown), it

suffices to focus on BP1way. (The asymptotic bias of LMd, the source of the power, is simply two times

the asymptotic bias of BP1way.)
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in (6) to

∂h (yi|xi, θ0, η)

∂η

∣∣∣∣
η=0

=

∫
∂f (yi|xi, θ0)

∂θ1
ek (e|xi) de =

∂f (yi|xi, θ0)

∂θ1

∫
ek (e|xi) de

=
∂f (yi|xi, θ0)

∂θ1
µ (xi) ,

where we define µ (x) := E [εi|Xi = x]. Because one can consider arbitrary specification

of µ (x), the score test that is against all possible specifications of the fixed effects would

test whether the equality

E

[
∂f (Yi|Xi, θ0)/ ∂θ1

f (Yi|Xi, θ0)
µ (Xi)

]
= 0 (19)

holds for all µ (Xi).
18 Because the score test is equivalent to an infinite number of uncon-

ditional moment restrictions (19), a practitioner needs to confront the resultant statistical

complications.19 Our objective is not to develop different tests for different alternatives.

Rather, we would like to examine the power properties of the BP test against general

alternatives including fixed effects, even though BP1way in (8) was initially developed to

detect the random effects. This is an interesting question for practice because the BP test

is relatively simple to implement; it is an LM test, and therefore, it suffices to estimate

the parameters under the null hypothesis of no neglected heterogeneity, which may be

very convenient computationally. Therefore, one may ask the question of whether the BP

test can actually detect the fixed effects, even though the fixed effects were not the initial

target and therefore, the BP test is not expected to be as powerful as the test of infinite

number of moment restrictions when µ(·) ̸= 0. We show that the BP test has a power

even against the fixed effects, although its power may be weak in linear models.

3.1 Power of the BP Test Against Random Effects

We begin with the random effects. Even though it seems to be such an elementary question,

we have not found a literature that deals with the power of the BP test in general nonlinear

18This prompted Hahn et al. (2017) to conclude that any test of the conditional moment restriction

E
[

∂f(Yi|Xi,θ0)/∂θ1
f(Yi|Xi,θ0)

∣∣∣Xi

]
= 0 can be a possible test of fixed effects.

19A pragmatic choice would be to work with µ(Xi) = Xi, an approach similar to the generic test of

over-identification considered by Chamberlain (1984, Section 4).
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models, an obvious gap in the literature if our library research is correct. Using (8), we

can see that our BP statistic can be written as mN

(
θ̄N
)
, where

mN (θ) := N−1

N∑
i=1

m (Zi, θ) , m (z, θ) :=
∂2f (y|x, θ)/ ∂θ21

f (y|x, θ)
, (20)

z denotes the observed data vector, and θ̄N denotes the MLE of θ under the null hypoth-

esis of no unobserved heterogeneity. The local power can be analyzed by deriving the

asymptotic distribution under the appropriate sequence of DGP’s under the alternative of

random effects. Newey (1985)’s analysis is almost tailor-made for our purpose, which we

adopt as the main tool of analysis.20 Minor differences do exist. For example, the discus-

sion in the previous section suggests that the local power analysis should be conducted

by examining the N1/4 =
√
N1/2-neighborhood, i.e., by examining the local alternatives

of the form θ1,i = θ0,1 + N−1/4εi.
21 As a result, we will consider the local alternatives of

random effects where (i) θ1,i = θ0,1 + N−1/4εi, (ii) εi is independent of Xi; (iii) E [εi] = 0

and E [ε2i ] = σ2
ε .

Next theorem gives the local power property of the BP test against the alternatives of

random effects.

Theorem 3 Under Assumptions 1 - 7 detailed in Appendix B.1, we get

√
NmN

(
θ̄N
)
⇒ N

(
σ2
ε

2

(
κ1 − κ′

2I−1κ2

)
, κ1 − κ′

2I−1κ2

)
,

where

s (z, θ0) :=
∂f (y|x, θ0)/ ∂θ

f (y|x, θ0)
,

I := E
[
s (Zi, θ0) s (Zi, θ0)

′] = −E

[
∂s (Zi, θ0)

∂θ′

]
,

κ1 := E

[(
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)

)2
]
,

20In this section, we also adopt Newey (1985)’s notation wherever is possible.
21Honda (1985) worked with a case that includes both the individual and time effects, and assumed

that N,T → ∞ at the same rate. Because we are working with models without time effects and with fixed

T , it is a little difficult to make a direct comparison.

18



κ2 := E

[
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)
s (Zi, θ0)

]
.

Proof. In Appendix B.2.

Theorem 3 implies that (i) we could use a squared standardized BP test statistic(√
NmN

(
θ̄N
))2

κ̂1 − κ̂′
2Î−1κ̂2

, (21)

where κ̂1, κ̂2, Î are consistent estimators of κ1, κ2, I; and (ii) its asymptotic distribution

under θ1,i = θ0,1 + N−1/4εi is a non-central χ2
1 distribution with noncentrality parameter(

σ2
ε

2

)2
(κ1 − κ′

2I−1κ2). Note that κ1−κ′
2I−1κ2 can be interpreted to be the variance of the

residual when m (Zi, θ0) is regressed on s (Zi, θ0). Unless such residual variance is equal to

zero, we should expect that the BP test would have a power against the random effects,

i.e., the probability of rejection is higher under the alternative than under the null. Given

that κ1 − κ′
2I−1κ2 is equal to the asymptotic variance of

√
NmN

(
θ̄N
)
, we can conclude

that such a pathological anomaly as κ1 − κ′
2I−1κ2 = 0 should not be expected in practice.

As an example, let’s consider a panel logit model where

Yit = I{X∗′
it β0 + αN,i + vit ≥ 0}, i = 1, . . . , N, t = 1, . . . , T, (22)

where αN,i = α0 under the null and αN,i = α0 + N−1/4εi under the alternative. Let

θ = (αi, β
′)′, and assume that vit are errors such that the log conditional density of Yi

given Xi and θ is characterized by

ln f (Yi|Xi, θ) =
T∑
t=1

(
Yit ln

exp(X ′
itθ)

1 + exp(X ′
itθ)

+ (1− Yit) ln
1

1 + exp(X ′
itθ)

)
.

Let Λit (θ) := exp (X ′
itθ)/ (1 + exp (X ′

itθ)) and note that ∂Λit/ ∂θ = Λit(1−Λit)Xit. Then

we have

s (Yi|Xi, θ0) =
T∑
t=1

(Yit − Λit)Xit,

∂2 ln f (Yi|Xi, θ0)

∂θ∂θ′
= −

T∑
t=1

Λit(1− Λit)XitX
′
it.
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We can see that the BP test statistic is based on

m(Zi, θ0) :=
∂2 ln f(Yi|Xi, θ0)

∂θ21
+

(
∂ ln f(Yi|Xi, θ0)

∂θ1

)2

= −
T∑
t=1

Λit(1− Λit) +

(
T∑
t=1

(Yit − Λit)

)2

,

and if we assume that Yit and Yis (t ̸= s) are independent given Xi, then we have

I = E

[
T∑
t=1

Λit(1− Λit)XitX
′
it

]
,

κ1 = E

[
T∑
t=1

Λit(1− Λit)(1− 2Λit)
2 + 2

T∑
t,s,=1,t̸=s

Λit(1− Λit)Λis(1− Λis)

]
,

κ2 = E

[
T∑
t=1

Λit(1− Λit)(1− 2Λit)Xit

]
.

3.1.1 Discussion

Remark 2 Under the null, we can take σ2
ε = 0, so the asymptotic null distribution is

N(0, κ1 − κ′
2I−1κ2), which justifies the test statistic (21). See also Lancaster (1984).

Remark 3 Note that κ1 is equal to the variance of m (z, θ0) under the null. Therefore,

the component −κ′
2I−1κ2 represents the noise of estimating the MLE θ̄n as part of the test

statistic. It turns out that the linear panel model is a special case where κ2 = 0, and the

test statistic does not need to be adjusted for the noise of estimating the MLE/OLS. See

Appendix B.4.

Remark 4 The κ2 has yet another interpretation. If κ2 = 0, the MLE is asymptotically

unbiased even under the alternative of random effects, as discussed in Remark 10 in Ap-

pendix B.2. In other words, if the statistic
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)
is uncorrelated with the score

s (Yi|Xi, θ0), the MLE is not affected under the alternatives of random effects. Note that

κ2 is identical to the numerator of the bias formula in panel data analysis as discussed in

Hahn and Newey (2004, p.1315).22 If such a diagnostic test is desired, one can test the

22See the bias formula involving V2it in the second to last displayed equation. The V2it there is equivalent

to our test statistic. See also Arellano and Hahn (2007, Section 3.1) for a similar expression.
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null hypothesis κ2 = 0 by evaluating the test statistic based on

N1/2κ̂2 := N−1/2

N∑
i=1

∂2f
(
Yi|Xi, θ̄N

)
/∂θ21

f
(
Yi|Xi, θ̄N

) s
(
Yi|Xi, θ̄N

)
.

Using standard arguments, it can be shown that this statistic is equal to

N−1/2

N∑
i=1

∂2f (Yi|Xi, θ0) /∂θ
2
1

f (Yi|Xi, θ0)
s (Yi|Xi, θ0) + κ′

4I−1N−1/2

N∑
i=1

s (Yi|Xi, θ0) + op (1) ,

where23

κ4 := E

[
∂

∂θ

(
∂2f (Yi|Xi, θ0) /∂θ

2
1

f (Yi|Xi, θ0)

)
s (Yi|Xi, θ0)

]
+E

[
∂2f (Yi|Xi, θ0) /∂θ

2
1

f (Yi|Xi, θ0)

∂s (Yi|Xi, θ0)

∂θ

]
.

It follows that

N−1/2

N∑
i=1

∂2f
(
Yi|Xi, θ̄N

)
/∂θ21

f
(
Yi|Xi, θ̄N

) s
(
Yi|Xi, θ̄N

)
→ N

(
0, κ3 − κ′

4I−1κ4

)
,

where κ3 := E

[(
∂2f(Yi|Xi,θ0)/∂θ

2
1

f(Yi|Xi,θ0)

)2
s (Yi|Xi, θ0) s (Yi|Xi, θ0)

′
]
, and the squared standard-

ized test statistic takes the form Nκ̂′
2

(
κ̂3 − κ̂′

4Î−1κ̂4

)−1

κ̂2, where κ̂3 and κ̂4 are straight-

forward sample analogs of κ3 and κ4. Obviously, the distribution of the test statistic under

the null of κ2 = 0 is χ2
q (where q is the dimension of θ).

A sequential test procedure can therefore be used in practice. First, test whether there

is neglected heterogeneity in the random effects form, i.e., whether E [m(Zi, θ0)] = 0, by

comparing the BP test statistic in (21) with χ2
1,1−α, the upper α level critical value from

the χ2
1 distribution. If this test rejects the null, then proceed to test whether κ2 = 0

by comparing Nκ̂′
2

(
κ̂3 − κ̂′

4Î−1κ̂4

)−1

κ̂2 with χ2
q,1−α, the upper α level critical value from

the χ2
q distribution. If the null is not rejected, then the neglected heterogeneity does not

significantly affect the inference based on the MLE which does not take it into account.

This sequential procedure has an overall false rejection probability (weakly) smaller than α.

23Note that

κ4 = −E

[
∂2f(Yi|Xi, θ0)/∂θ

2
1

f(Yi|Xi, θ0)
s(Yi|Xi, θ0)s(Yi|Xi, θ0)

′
]

if κ2 = 0, which may provide a basis for an alternative form of the asymptotic variance.

21



3.2 Power of the BP Test Against Fixed Effects

The discussion leading up to (19) indicates that the parameterization h
(
y|x, θ0,

√
η
)
is

appropriate for local power analysis when µ(Xi) = E [εi|Xi] = 0, while the parameteriza-

tion h (y|x, θ0, η) is appropriate for local power analysis when E [εi|Xi] ̸= 0. The former

parameterization captures the appropriate second order effects, as is evident in the deriva-

tion of (7), and the latter captures the first order effects. Therefore, a useful synthesis is

to combine the two and to consider the local parameterization of the form

f

(
yi

∣∣∣∣xi,

(
θ0,1 +

µ (xi)

N1/2
+

ε∗i
N1/4

, θ0,2, . . . , θ0,q

))
, (23)

where E [ε∗i |xi] = 0.

Next theorem gives the local power property of the BP test against the alternatives of

fixed effects of the form (23).24

Theorem 4 Under Assumptions 1 - 2, 3′ and 4 - 7 detailed in Appendix B.1, we get

√
NmN

(
θ̄N
)
⇒ N

([
I1,−κ′

2I−1
]
(KF +K∗

R) , κ1 − κ′
2I−1κ2

)
,

where Ik is the k × k identity matrix (k = 1 here),

KF :=

 E

{
E

[
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)
s1 (Yi|Xi, θ0)

∣∣∣∣Xi

]
µ (Xi)

}
E {E [s (Yi|Xi, θ0) s1 (Yi|Xi, θ0)|Xi]µ (Xi)}

 ,

K∗
R :=

1

2


E

{
E
[
(ε∗i )

2
∣∣Xi

]( ∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

)2
}

E

{
E
[
(ε∗i )

2
∣∣Xi

]
s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

}
 ,

and s1 (Yi|Xi, θ0) denotes the first coordinate of the score s (Yi|Xi, θ0).

Proof. In Appendix B.3.

Similar to the random effect case, Theorem 4 implies that (i) we could use the same

squared standardized BP test statistic in (21) in the fixed effect case; and (ii) its asymptotic

distribution under θ0,1 +
µ(x)

N1/2 + ε∗

N1/4 is a non-central χ2
1 distribution with noncentrality

parameter
([I1,−κ′

2I−1](KF+K∗
R))

2

κ1−κ′
2I−1κ2

.

24Theorem 4 makes a marginal contribution over Hahn et al. (2017)’s Proposition 2 by explicitly

accounting for the noise of estimating θ̄N .
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4 A Pragmatic Aspect of the LM Test

In practice, we would have to confront the fact that θ0 is estimated and examine how the

noise of estimating θ0 by the MLE θ̄n affects the distribution of the test statistic under the

null. We will argue that for the two-way error component panel models with N, T → ∞

asymptotics, the noise does not affect the asymptotic distribution. For this purpose, it

suffices to examine the distribution of (12) evaluated at the MLE

1√
NT

N∑
i=1

T∑
t=1

∂2 ln f
(
Yit|Xit, θ̄n

)
∂θ21

+
1√
NT

N∑
i=1

(
T∑
t=1

∂ ln f
(
Yit|Xit, θ̄n

)
∂θ1

)2

, (24)

where we recognize that the MLE is such that
√
NT

(
θ̄n − θ0

)
= Op (1) under the null,

with the N, T → ∞ asymptotics. Under such asymptotics, it can be shown that (24) has

the same distribution as (12) under the null.25 By a similar argument, we can conclude

that (13) has the same asymptotic distribution as its feasible counterpart, where the two

θ0 in (13) are replaced by θ̄n.
26

Honda (1985) analyzed the asymptotic properties of the BP test for the linear model,

and his analysis indicates that the feasible test statistic evaluated at the MLE does not need

to reflect the noise of estimating the MLE. On the other hand, Lancaster (1984) showed

that it is in general necessary to adjust for such noise in general nonlinear models. In

Section 3.1.1, we explained that this seeming contradiction can be understood by noticing

that Lancaster (1984)’s adjustment is unnecessary for linear models.27 In this section,

we went one step further to show that Lancaster (1984)’s adjustment is unnecessary for

general two-way error component panel models. Lancaster (1984) implicitly adopted “large

N , fixed T” asymptotics, which is natural for one-way error component panel models. In

contrast, the two-way models make it necessary to adopt a “large N , large T” asymptotic

framework. Given that the natural asymptotic frameworks are different, there is no logical

contradiction.
25See Appendix C.
26Our conclusion only requires that (12) and (13) are both unaffected by the noise of the estimation

of θ0. Hence, the joint asymptotic distribution of the random vector consisting of (12) and (13), if it is

correctly established, is unaffected by such a noise.
27See Remark 3.
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Our result in this section has convenient pragmatic implications beyond two-way error

component panel models. First, due to the equality between (8) and (12), Lancaster

(1984)’s adjustment is unnecessary for one-way error component panel models if a “large

N , large T” asymptotic framework is adopted. Second, and more importantly, due to the

asymptotic equivalence between LMd in (11) and the sum of (12) and (13) when N = T ,

Lancaster (1984)’s adjustment is also unnecessary for directed dyadic regression models.

5 Monte Carlo Experiments

We explore finite sample properties of the LM test in two directed dyadic link formation

models with unobserved individual heterogeneity. Model 1 is

yij = I{xijθ0 + εi + εj + vij > 0},

xij = wi ∗ wj,

wi ∼ iid U

(
−1

2
,
1

2

)
,

εi ∼ iid N(0, σ2
ε),

vij ∼ iid N(0, 1),

where θ0 = 1, i ̸= j, and i, j ∈ {1, . . . , N}. We run R = 5000 Monte Carlo repetitions,

and for each one we vary N ∈ {23, 32} and σ2
ε ∈ {1/2, 1/8, 1/32, 0}.28 εis in this model

are random effects since their distribution does not depend on xijs.

Model 2 is the same as Model 1, except it contains fixed effects εi ∼ N(σεx
max
i , σ2

ε(1 +

xmax
i )), and εis are mutually independent, where xmax

i ≡ maxj ̸=i xij.

Finite sample sizes and powers of the LM test for these models are reported in Panel

A of Table 1. The results are consistent with our theoretical analysis.

To understand the effect of misspecification of the conditional likelihood f(Yij|Xij, θ),

we also let vij ∼ iid logistic(0,
√
3

π
) and run 5000 Monte Carlo repetitions of our test

assuming the standard normal distribution of vij. The results are reported in Panel B of

28We choose these N values such that the effective sample sizes, N(N − 1), are roughly 500 and 1000,

respectively.
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Table 1. The rejection rates increase due to the misspecification, but not by much. More

importantly, the sizes are still well controlled by the nominal level, so our test appears to

be reasonably robust to mild misspecification of the conditional likelihood.

Table 1: Rejection Rates of Level 5% LM Test

Panel A: correct specification, i.e., vij ∼ iid N(0, 1)

Model 1 (Random Effects) Model 2 (Fixed Effects)

σ2
ε 1/2 1/8 1/32 0 1/2 1/8 1/32 0

N = 23 1.000 0.947 0.280 0.027 1.000 0.971 0.343 0.027

N = 32 1.000 0.999 0.653 0.033 1.000 1.000 0.754 0.033

Panel B: misspecification, i.e., vij ∼ iid logistic(0,
√
3/π)

Model 1 (Random Effects) Model 2 (Fixed Effects)

σ2
ε 1/2 1/8 1/32 0 1/2 1/8 1/32 0

N = 23 1.000 0.981 0.386 0.028 1.000 0.990 0.466 0.028

N = 32 1.000 1.000 0.778 0.035 1.000 1.000 0.861 0.035

6 Summary

We developed a test of neglected individual effects in dyadic regression models by modifying

the BP test. The test statistic is almost identical to the the sum of two components of

the BP test statistic in the panel data analysis for testing the presence of two-way error

components. Asymptotic distribution of the test statistic is carefully derived based on a

novel martingale argument.

We also derived several interesting results about the BP test in generic panel data

analysis. We showed that the test has a power against fixed effects, even though it was

developed to detect random effects. We also analyzed the nature of the distortion to the

asymptotic distribution induced by the noise of estimating the MLE, and found that the

noise need not be accounted for with one-way linear models or general two-way models.
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Online Appendices

for

“Test of Neglected Heterogeneity in Dyadic Models”

by

Jinyong Hahn, Hyungsik Roger Moon and Ruoyao Shi

A Proof of the Theorems in Section 2

A.1 Construction of a Martingale Difference Sequence Array

We assume T := T (N), where T (N) → ∞ is an increasing function of N with N
T
→ κ and

0 < κ < ∞. For simplicity, we will often use notation T instead of T (N).

Our proof of Theorem 1 relies on a novel construction of a martingale difference se-

quence, which we explicitly discuss here. We can rewrite
√
NANT as

√
NANT = ϱ

1

N

N∑
i=1

T∑
t,s=1,t ̸=s

UitUis +
1

N

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt

= ϱ
2

N

N∑
i=2

T∑
t=2

(
t−1∑
s=1

Uis

)
Uit +

2

N

N∑
i=2

T∑
t=2

(
i−1∑
j=1

Ujt

)
Uit

+ ϱ
2

N

T∑
t=2

(
t−1∑
s=1

U1s

)
U1t +

2

N

N∑
i=2

(
i−1∑
j=1

Uj1

)
Ui1

=
2

N

[
N∑
i=2

T∑
t=2

{(
i−1∑
j=1

Ujt

)
+ ϱ

(
t−1∑
s=1

Uis

)}
Uit

]
+Op (1) . (A.1)

Remark 5 The Op (1) term in (A.1) is equal to

ϱ
2

N

T∑
t=2

(
t−1∑
s=1

U1s

)
U1t +

2

N

N∑
i=2

(
i−1∑
j=1

Uj1

)
Ui1 =

2ϱ

N

∑
1≤s<t≤T

U1sU1t +
2

N

∑
1≤j<i≤N

Uj1Ui1,

which is indeed of stochastic order of Op (1) because

E

(2ϱ

N

∑
1≤s<t≤T

U1sU1t +
2

N

∑
1≤j<i≤N

Uj1Ui1

)2

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≤ 2ϱ2E

( 2

N

∑
1≤s<t≤T

U1sU1t

)2
+ 2E

( 2

N

∑
1≤j<i≤N

Uj1Ui1

)2


=
8ϱ2

N2

∑
1≤s<t≤T

E
[
(U1sU1t)

2]+ 8

N2

∑
1≤j<i≤N

E
[
(Uj1Ui1)

2]
=

8ϱ2

N2

T (T − 1)

2
σ4
U +

8

N2

N (N − 1)

2
σ4
U

= O(1)

as N, T → ∞ with N
T
→ κ and 0 < κ < ∞.

Define

Qit :=
2

N

{(
i−1∑
j=1

Ujt

)
+ ϱ

(
t−1∑
s=1

Uis

)}
Uit

for 2 ≤ i ≤ N and 2 ≤ t ≤ T , and we can rewrite the leading term of (A.1)

2

N

N∑
i=2

T∑
t=2

{(
i−1∑
j=1

Ujt

)
+ ϱ

(
t−1∑
s=1

Uis

)}
Uit =

N∑
i=2

T∑
t=2

Qit.

Assume N ≤ T in the following, and the case where N > T can be handled symmetri-

cally. Define

ZN,2 := Q22 =
2

N
(U12 + ϱU21)U22.

Next, for 3 ≤ n ≤ N , define

ZN,n :=
n−1∑
t=2

Qnt +
n−1∑
i=2

Qin +Qnn

=
2

N

n−1∑
t=2

{(
n−1∑
j=1

Ujt

)
+ ϱ

(
t−1∑
s=1

Uns

)}
Unt +

2

N

n−1∑
i=2

{(
i−1∑
j=1

Ujn

)
+ ϱ

(
n−1∑
s=1

Uis

)}
Uin

+
2

N

{(
n−1∑
j=1

Ujn

)
+ ϱ

(
n−1∑
s=1

Uns

)}
Unn.

Also, if N < T , then for N + 1 ≤ n ≤ T , define

ZN,n :=
N∑
i=2

Qin =
2

N

N∑
i=2

{(
i−1∑
j=1

Ujn

)
+ ϱ

(
n−1∑
s=1

Uis

)}
Uin.
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Therefore, the leading term of (A.1) can be further rewritten as

2

N

N∑
i=2

T∑
t=2

{(
i−1∑
j=1

Ujt

)
+ ϱ

(
t−1∑
s=1

Uis

)}
Uit =

N∑
i=2

T∑
t=2

Qit =
T∑

n=2

ZN,n.

In sum, we see that
√
NANT =

T∑
n=2

ZN,n +Op (1) , (A.2)

and we will analyze
∑T

n=2 ZN,n using the martingale described below.

For 1 ≤ n ≤ N , define FN,n to be the sigma field generated by {Uit : 1 ≤ i, t ≤ n}. For

N+1 ≤ n ≤ T , define FN,n to be the sigma field generated by {Uit : 1 ≤ i ≤ N, 1 ≤ t ≤ n}.

By definition, we have FN,1 ⊂ FN,2 ⊂ · · · ⊂ FN,T , and ZN,n is measurable with respect

to FN,n for 2 ≤ n ≤ T . Also, we have

E (ZN,n|FN,n−1) = 0 and E (|ZN,n|) < ∞,

for 2 ≤ n ≤ T . Therefore, {ZN,n,FN,n , 2 ≤ n ≤ T} is a martingale difference sequence

array.

A.2 Proof of Lemma 1

With the assumption N < T , we define

BNN :=
N∑

n=2

ZN,n =
2

N

[
N∑
i=2

N∑
t=2

{(
i−1∑
j=1

Ujt

)
+ ϱ

(
t−1∑
s=1

Uis

)}
Uit

]
,

CNT :=
T∑

n=N+1

ZN,n =
2

N

[
N∑
i=2

T∑
t=N+1

{(
i−1∑
j=1

Ujt

)
+ ϱ

(
t−1∑
s=1

Uis

)}
Uit

]
.

If N = T , then let CNT = 0. We can rewrite

√
NANT = BNN + CNT +Op (1) .

We will work with Hall and Heyde (1980)’s Corollary 3.3 to obtain the CLT. Because

of complexity of notation, we will take care of BNN and CNT separately and obtain in-

termediate results in the next two subsections. All the intermediate results assume the

conditions in Lemma 1, and we skip the conditions in stating the intermediate results.

The intermediate results can be combined to show the result of Lemma 1 as follows.
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Lemma 4 E

[∣∣∣∑T
n=2 E

[
Z2
N,n

N

∣∣∣FN,n−1

]
− 2

(
1
κ
+ ϱ2

κ2

)
σ4
U

∣∣∣2] = o (1).

Proof. From Lemmas 9 and 13, we have

T∑
n=2

E

[
Z2

N,n

N

]
=

T∑
n=2

E

(
E

[
Z2

N,n

N

∣∣∣∣FN,n−1

])
= 2

(
ϱ2 + 1

)
σ4
U + 2 (T −N)

N +Nϱ2 + Tϱ2

N2
σ4
U + o (1)

=
2

N2
T
(
Tϱ2 +N

)
σ4
U + o (1) ,

from which we conclude that

T∑
n=2

E

[
Z2

N,n

N

]
= 2

(
1

κ
+

ϱ2

κ2

)
σ4
U + o (1) ,

where we recall that κ = lim N
T
. Combined with

E

∣∣∣∣∣
T∑

n=2

(
E

[
Z2

N,n

N

∣∣∣∣FN,n−1

]
− E

[
Z2

N,n

N

])∣∣∣∣∣
2
 = o (1) ,

which follows from Lemmas 8 and 12, we obtain the conclusion.

Lemma 5
∑T

n=2E
[
Z4
N,n

N2

]
= o (1).

Proof. It is a consequence of Lemmas 10 and 14.

By Lemmas 4 and 5, we can see that Hall and Heyde (1980)’s (3.38) and (3.40) are

satisfied with p = 2. Therefore, we can conclude by Hall and Heyde (1980)’s Corollary 3.3

that
T∑

n=2

ZN,n√
N

⇒ N

(
0, 2

(
1

κ
+

ϱ2

κ2

)
σ4
U

)
,

which, combined with (A.2), implies the result of Lemma 1.

Remark 6 Lemma 5 implies max2≤n≤T E
[

Z2
N,n

N

∣∣∣FN,n−1

]
= op (1), which is a counterpart

of Hall and Heyde (1980)’s (3.34). This can be seen by letting Wn := E
[

Z2
N,n

N

∣∣∣FN,n−1

]
≥ 0,

and noting that we have for any ϵ > 0,

P

(
max
2≤n≤T

Wn ≥ ϵ

)
≤ P

(
T∑

n=2

W 2
n ≥ ϵ2

)
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≤ 1

ϵ2

T∑
n=2

E(W 2
n)

=
1

ϵ2

T∑
n=2

E

[(
E

[
Z2

N,n

N

∣∣∣∣FN,n−1

])2
]

≤ 1

ϵ2

T∑
n=2

E

[
E

[(
Z2

N,n

N

)2
∣∣∣∣∣FN,n−1

]]

=
1

ϵ2

T∑
n=2

E

[
Z4

N,n

N2

]
.

Remark 7 Lemma 5 also implies that Hall and Heyde (1980)’s (3.36), i.e., the Lindeberg-

Feller condition, is satisfied. For this purpose, note that

T∑
n=2

E

[
Z2

N,n

N
I
{∣∣∣∣ZN,n√

N

∣∣∣∣ ≥ ϵ

}]
≤ 1

ϵ2

T∑
n=2

E

[(
ZN,n√
N

)4
]
.

A.2.1 Analysis of BNN

We will assume that n ≤ N below. Recall that

ZN,2 =
2

N
(U12 + ϱU21)U22,

and for 3 ≤ n ≤ N ,

ZN,n :=
2

N

n−1∑
t=2

{(
n−1∑
j=1

Ujt

)
+ ϱ

(
t−1∑
s=1

Uns

)}
Unt +

2

N

n−1∑
i=2

{(
i−1∑
j=1

Ujn

)
+ ϱ

(
n−1∑
s=1

Uis

)}
Uin

+
2

N

{(
n−1∑
j=1

Ujn

)
+ ϱ

(
n−1∑
s=1

Uns

)}
Unn.

Notice that

E

[
Z2

N,2

N

∣∣∣∣FN,1

]
=

4

N3
(1 + ϱ2)σ4

U . (A.3)

Lemma 6 For 3 ≤ n ≤ N , we have

E

[
Z2

N,n

N

∣∣∣∣FN,n−1

]
=

4σ4
U

N3

n−1∑
t=2

(
n−1∑
j=1

Ujt

σU

)2

+
4ϱ2σ4

U

N3

n−1∑
i=2

(
n−1∑
s=1

Uis

σU

)2

+
2 (1 + ϱ2)n (n− 1)

N3
σ4
U .
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Proof. We have

E
[
Z2

N,n

∣∣FN,n−1

]
=

4

N2

n−1∑
t=2


(

n−1∑
j=1

Ujt

σU

)2

σ2
U + ϱ2 (t− 1)σ2

U

σ2
U

+
4

N2

n−1∑
i=2

(i− 1)σ2
U + ϱ2

(
n−1∑
s=1

Uis

σU

)2

σ2
U

σ2
U

+
4

N2

{
(n− 1)σ2

U + ϱ2 (n− 1)σ2
U

}
σ2
U , (A.4)

from which we derive the implication.

Lemma 7 Suppose that the kurtosis of
Ujt

σU
is K + 1. We then have

Var

( n∑
j=1

Ujt

σU

)2
 = 2n2 + (K − 2)n, and Var

( n∑
s=1

Uis

σU

)2
 = 2n2 + (K − 2)n.

Proof. We have

E

( n∑
j=1

Ujt

σU

)4
 =

n∑
j=1

E

[(
Ujt

σU

)4
]
+ 3

∑
j ̸=j′

E

[(
Ujt

σU

)2
]
E

[(
Uj′t

σU

)2
]

= n (K + 1) + 3n (n− 1) , (A.5)

so

Var

( n∑
j=1

Ujt

σU

)2
 = E

( n∑
j=1

Ujt

σU

)4
−

E

( n∑
j=1

Ujt

σU

)2
2

= n (K + 1) + 3n (n− 1)− n2

= 2n2 + (K − 2)n.

The second statement holds by symmetry.

Lemma 8 E

[∣∣∣∑N
n=2

(
E
[

Z2
N,n

N

∣∣∣FN,n−1

]
− E

[
Z2
N,n

N

])∣∣∣2] = o (1) .

Proof. Since
(

1
N

∑N
n=1 an

)2
≤ 1

N

∑N
n=1 a

2
n, the desired result of the lemma follows if

we show

E

[
1

N

N∑
n=2

(
E
[
Z2

N,n

∣∣FN,n−1

]
− E

[
Z2

N,n

])2]
= o(1).
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Notice that by the independence among Uit and the definition of FN,1, we have E
[
Z2

N,2

∣∣FN,1

]
−

E
[
Z2

N,2

]
= 0. Then,

1

σ8
U

E

[
1

N

N∑
n=2

(
E
[
Z2

N,n

∣∣FN,n−1

]
− E

[
Z2

N,n

])2]

=
1

σ8
U

E

[
1

N

N∑
n=3

(
E
[
Z2

N,n

∣∣FN,n−1

]
− E

[
Z2

N,n

])2]

=
1

σ8
U

1

N

N∑
n=3

Var
(
E
[
Z2

N,n

∣∣FN,n−1

])
=

1

σ8
U

1

N

N∑
n=3

Var

 4

N2

n−1∑
t=2

(
n−1∑
j=1

Ujt

σU

)2

+
4ϱ2

N2

n−1∑
i=2

(
n−1∑
s=1

Uis

σU

)2
σ4

U

 ,

where we used Lemma 6 for the last equality. Therefore, we have
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where in the last equality, we used the fact that (i)
(∑n−1

j=1
Ujt

σU

)2
are independent over t;

and (ii)
(∑n−1

s=1
Uis

σU

)2
are independent over i. Using Lemma 7, we obtain
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from which we obtain
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[
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as required.
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(
E
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Proof. For 3 ≤ n, from (A.4), we obtain

E
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E
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from which together with (A.3) we obtain
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.

Lemma 10
∑N

n=2E
[
Z4
N,n
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]
= o (1) .

Proof. It is straightforward to show that

E

[
Z4

N,2
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]
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In what follows, we show
N∑

n=3

E

[
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]
= o (1) .

Recall that for 3 ≤ n ≤ N , we have
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{(∑i−1
j=1 Ujn

)
+ ϱ
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Uin, and

2
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)
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(∑n−1
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)}
Unn, where i, t =

2, ..., n−1. For notational simplicity, here let’s call each termWj with j = 1, . . . , 2n−3. We

first note that Wj and Wj′ are independent conditional on FN,n−1 due to the independence
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Using the Cauchy-Schwarz inequality, we have
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In what follows, we derive an upper bound of
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√
E
[
W 4
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.

Note that

E
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N
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)
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=
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From (A.5) and symmetry, we have
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]
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where S denotes the skewness of Uit/σU , we further conclude that
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Notice that if ϱ = 0,

(A.6) =

(
n−1∑
j=1

Ujt

)4

.
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On the other hand, if ϱ ̸= 0,
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and here and in what follows C denotes a generic constant. Likewise, we get
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Using (A.5) and symmetry, we also get
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for 3 ≤ n. Then,
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as desired for the lemma.

A.2.2 Analysis of CNT
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where we used Lemma 11 in the second equality, and in the last equality, we used the fact
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N2
Tϱ2 +

2

N2
T 2ϱ2 − 2

N3
T 2ϱ2 +

2

N3
Tϱ2 − 2

N2
ϱ2

= −2ϱ2 +
2

N
T +

2

N2
T 2ϱ2 − 2 + o (1) .

Lemma 14
∑T

n=N+1E
[
Z4
N,n

N2

]
= o(1).

Proof. Recall that for N + 1 ≤ n ≤ T , we have

ZN,n :=
2

N

N∑
i=2

{(
i−1∑
j=1

Ujn

)
+ ϱ

(
n−1∑
s=1

Uis

)}
Uin,

so we see that ZN,n consists of N − 1 terms like 2
N

{(∑i−1
j=1 Ujn

)
+ ϱ

(∑n−1
s=1 Uis

)}
Uin.

Let’s call them Wj with j = 1, . . . , N − 1. We first note that Wj and Wj′ are independent

conditional on FN,n−1 due to the independence among Uin (i = 2, . . . , N). Then, we have

E

(N−1∑
j=1

Wj

)4
∣∣∣∣∣∣FN,n−1

 =
N−1∑
j=1

E
[
W 4

j

∣∣FN,n−1

]
+ 3

∑
j ̸=j′

E
[
W 2

j W
2
j′

∣∣FN,n−1

]
.

Using the Cauchy-Schwarz inequality, we have

E

(N−1∑
j=1

Wj

)4
∣∣∣∣∣∣FN,n−1

 ≤
N−1∑
j=1

E
[
W 4

j

∣∣FN,n−1

]
+ 3

∑
j ̸=j′

√
E
[
W 4

j

∣∣FN,n−1

]√
E
[
W 4

j′

∣∣FN,n−1

]
≤

N−1∑
j=1

3E
[
W 4

j

∣∣Fn−1

]
+ 3

∑
j ̸=j′

√
E
[
W 4

j

∣∣FN,n−1

]√
E
[
W 4

j′

∣∣FN,n−1

]
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= 3

(
N−1∑
j=1

√
E
[
W 4

j

∣∣FN,n−1

])2

.

As in the proof of Lemma 10, we can bound

E

( 2

N

{(
i−1∑
j=1

Ujn

)
+ ϱ

(
n−1∑
s=1

Uis

)}
Uin

)4
∣∣∣∣∣∣FN,n−1

 ≤ C

N4

(n−1∑
s=1

Uis

σU

)2

+M (i− 1)

2

for some finite generic constant C. Therefore, we get the following bound

E

[
Z4

N,n

N2

∣∣∣∣FN,n−1

]
= E

 1

N2

(
N−1∑
j=1

Wi

)4
∣∣∣∣∣∣FN,n−1

 ≤ 3

N2

(
N−1∑
j=1

√
E
[
W 4

j

∣∣FN,n−1

])2

≤ C

N6

 N∑
i=2

M (i− 1) +

(
n−1∑
s=1

Uis

σU

)2
2

=
C

N6

M

2
N (N − 1) +

N∑
i=2

(
n−1∑
s=1

Uis

σU

)2
2

≤ C

N6

2

(
M

2
N (N − 1)

)2

+ 2

 N∑
i=2

(
n−1∑
s=1

Uis

σU

)2
2

≤ C

N6

N2(N − 1)2 + (N − 1)
N∑
i=2

(
n−1∑
s=1

Uis

σU

)4
 ,

where we use the Cauchy-Schwarz inequality in the last line. By (A.5) and symmetry, we

have

E

(n−1∑
s=1

Uis

σU

)4
 = (n− 1)(K + 1) + 3(n− 1)(n− 2).

Therefore,

T∑
n=N+1

E

[
Z4

N,n

N2

]
=

T∑
n=N+1

E

[
E

[
Z4

N,n

N2

∣∣∣∣FN,n−1

]]

≤ C

(
(T −N)N2(N − 1)2

N6
+

(N − 1)2

N2

1

N4

T∑
n=N+1

((n− 1)(K + 1) + 3(n− 1)(n− 2))

)
= o(1),

as required for the lemma.
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A.3 Proof of Lemma 2

Note that the following equality holds if ϱ = 0:

1

N
√
T

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt =

√
N√
T

(
1

N
√
N

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt + ϱ
1

N
√
N

N∑
i=1

T∑
t,s=1,t̸=s

UitUis

)

=

√
N√
T
ANT ,

so its marginal asymptotic distribution can be deduced from Lemma 1 by taking ϱ = 0

and multiplying the asymptotic variance by
(
lim

√
N√
T

)2
= κ. In other words, Lemma 1

implies that

1

N
√
T

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt ⇒ N
(
0, 2σ4

U

)
.

By symmetry, we can deduce that

1√
NT

N∑
i=1

T∑
t,s=1,t̸=s

UitUis ⇒ N
(
0, 2σ4

U

)
.

Lemma 1 implies that in addition to these marginal asymptotic results, their joint

asymptotic distribution is also normal. Letting cov denote the asymptotic covariance, we

see that the asymptotic variance of 1
N
√
T

∑N
i,j=1,i ̸=j

∑T
t=1 UitUjt+ξ 1√

NT

∑N
i=1

∑T
t,s=1,t ̸=s UitUis

would be

2σ4
U + ξ2 · 2σ4

U + 2ξcov = 2σ4
U + ϱ2

1

κ
· 2σ4

U + 2ξcov = 2

(
1 +

ϱ2

κ

)
σ4
U + 2ξcov.

On the other hand, the joint distribution can be taken care of by analyzing

1

N
√
T

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt + ξ
1√
NT

N∑
i=1

T∑
t,s=1,t̸=s

UitUis

=

√
N√
T

(
1

N
√
N

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt + ξ

√
N

T

1

N
√
N

N∑
i=1

T∑
t,s=1,t̸=s

UitUis

)

=

√
N√
T

(
1

N
√
N

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt + ϱ
1

N
√
N

N∑
i=1

T∑
t,s=1,t̸=s

UitUis

)

=

√
N

T
ANT
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for ϱ = ξ
√
κ, where we assume for convenience that N/T is fixed. According to Lemma 1,

we obtain that the asymptotic variance of 1
N
√
T

∑N
i,j=1,i ̸=j

∑T
t=1 UitUjt+ξ 1√

NT

∑N
i=1

∑T
t,s=1,t ̸=s UitUis

is equal to N
T
· 2
(

1
κ
+ ϱ2

κ2

)
σ4
U = 2

(
1 + ϱ2

κ

)
σ4
U regardless of the value of ξ. So, we conclude

that the asymptotic covariance cov should be equal to zero. To conclude, Lemma 1 implies

that(
1

N
√
T

N∑
i,j=1,i ̸=j

T∑
t=1

UitUjt,
1√
NT

N∑
i=1

T∑
t,s=1,t̸=s

UitUis

)′

⇒ N

 0

0

 ,

 2σ4
U 0

0 2σ4
U

 .

A.4 Proof of Theorem 1

We assume that N = T and examine the contribution of the term with i = t. In other

words, for (12), we are looking at

1√
NN

N∑
i=1

N∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1√
NN

N∑
i=1

(
N∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

− 1√
NN

N∑
i=1

N∑
t̸=i

∂2 ln f (Yit|Xit, θ0)

∂θ21
− 1√

NN

N∑
i=1

(
N∑
t̸=i

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

=
1√
NN

N∑
i=1

∂2 ln f (Yii|Xii, θ0)

∂θ21
+

1√
NN

N∑
i=1

(
∂ ln f (Yii|Xii, θ0)

∂θ1

)2

+
2√
NN

N∑
i=1

(
∂ ln f (Yii|Xii, θ0)

∂θ1

)( N∑
t̸=i

∂ ln f (Yit|Xit, θ0)

∂θ1

)

=
1√
NN

N∑
i=1

(
∂2 ln f (Yii|Xii, θ0)

∂θ21
+

(
∂ ln f (Yii|Xii, θ0)

∂θ1

)2
)

(A.7)

+
2

N

N∑
i=1

(
∂ ln f (Yii|Xii, θ0)

∂θ1

)(
1√
N

N∑
t̸=i

∂ ln f (Yit|Xit, θ0)

∂θ1

)
. (A.8)

Because ∂2 ln f(Yii|Xii,θ0)

∂θ21
+
(

∂ ln f(Yii|Xii,θ0)
∂θ1

)2
is iid over i with mean zero, we see that the

term in (A.7) is of order O (N−1). As for the term in (A.8), we see that

E

[(
∂ ln f (Yii|Xii, θ0)

∂θ1

)(
1√
N

N∑
t̸=i

∂ ln f (Yit|Xit, θ0)

∂θ1

)]
= 0,
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and

E

(∂ ln f (Yii|Xii, θ0)

∂θ1

)2
(

1√
N

N∑
t̸=i

∂ ln f (Yit|Xit, θ0)

∂θ1

)2


= E

[(
∂ ln f (Yii|Xii, θ0)

∂θ1

)2
]
E

( 1√
N

N∑
t̸=i

∂ ln f (Yit|Xit, θ0)

∂θ1

)2


= O (1) ,

so

E

[
2

N

N∑
i=1

(
∂ ln f (Yii|Xii, θ0)

∂θ1

)(
1√
N

N∑
t̸=i

∂ ln f (Yit|Xit, θ0)

∂θ1

)]
= 0,

E

( 2

N

N∑
i=1

(
∂ ln f (Yii|Xii, θ0)

∂θ1

)(
1√
N

N∑
t̸=i

∂ ln f (Yit|Xit, θ0)

∂θ1

))2
 = O

(
N−1

)
.

Therefore, the sum of (A.7) and (A.8) are of order O
(
N−1/2

)
; that is, ignoring the i = t

terms in (12) does not add any complications to the asymptotic distribution analysis. The

same conclusion can be drawn for (13), too. This shows that the difference between the

two test statistics LMd and BPtwo is small, as argued at the beginning of Section 2.1.4.

In addition, recall that we have shown after (15) that the two statistics in Lemma 2 are

asymptotically equivalent to (12) and (13), respectively. Then the result of this theorem

follows from Lemma 2.

A.5 Proof of Lemma 3

Letting Qij := 2
N

(∑j−1
j′=1 Uij′

)
Uij for 2 ≤ i, j, j′ ≤ N , we can follow the argument in

Remark 5 to rewrite

√
NAN =

2

N

N∑
i=2

N∑
j=2

(
j−1∑
j′=1

Uij′

)
Uij +

2

N

N∑
j=2

(
j−1∑
j′=1

U1j′

)
U1j

=
N∑
i=2

N∑
j=2

Qij +Op(1).

For n ≥ 3, define

Z∗
N,n :=

n−1∑
i=2

Qni +
n−1∑
i=2

Qin +Qnn
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=
2

N

n−1∑
i=2

(
i−1∑
j=1

Unj

)
Uni +

2

N

n−1∑
i=2

(
n−1∑
j=1

Uij

)
Uin +

2

N

(
n−1∑
j=1

Unj

)
Unn

=
2

N

n−1∑
i=2

(
i−1∑
j=1

Unj

)
Uni +

2

N

n−1∑
i=2

(
n−1∑
j=1

Uij

)
Uin,

where the last equality holds because Unn = 0. Then we get

√
NAN =

N∑
n=2

Z∗
N,n +Op (1) .

In order to overcome the difficulty related to the dependence, note that we can write

the second component of Z∗
N,n above as

n−1∑
i=2

(
n−1∑
j=1

Uij

)
Uin =

n−1∑
i=2

Ui1Uin +
n−1∑
i=2

(
n−1∑
j=2

Uij

)
Uin

=
n−1∑
i=2

Ui1Uin +
n−1∑

i,j=2,i ̸=j

UijUin

=
n−1∑
i=2

Ui1Uin +
n−1∑

i=2,i<j

UijUin +
n−1∑

i=2,i>j

UijUin

=
n−1∑
i=2

Ui1Uin +
n−1∑

i=2,i<j

UijUin +
n−1∑

i=2,j>i

UjiUjn

=
n−1∑
i=2

Ui1Uin +
n−1∑

i=2,i<j

(UijUin + UijUjn)

=
n−1∑
i=2

Ui1Uni +
n−1∑

i=2,i<j

Uij (Uni + Unj) ,

where we used Uii = 0 in the second equality, simply interchanged the indices i and j in

the last term of the fourth equality, and the fifth and the sixth equalities hold because

Uji = Uij. It follows that

Z∗
N,n =

2

N

n−1∑
i=2

Un1Uni +
2

N

n−1∑
i=2,i<j

UniUnj +
2

N

n−1∑
i=2

Ui1Uni +
2

N

n−1∑
i=2,i<j

Uij (Uni + Unj) .

Note that

E

[
1

N

N∑
n=2

n−1∑
i=2

Un1Uni

]
= 0,

47



E

( 1

N

N∑
n=2

n−1∑
i=2

Un1Uni

)2
 =

1

N2

N∑
n=2

n−1∑
i=2

σ4
U = O (1) ,

and

E

[
1

N

N∑
n=2

n−1∑
i=2

Ui1Uni

]
= 0,

E

( 1

N

N∑
n=2

n−1∑
i=2

Ui1Uni

)2
 =

1

N2

N∑
n=2

n−1∑
i=2

σ4
U = O (1) ,

so we can further write

√
NAN =

2

N

N∑
n=2

n−1∑
i=2,i<j

UniUnj +
2

N

N∑
n=2

n−1∑
i=2,i<j

Uij (Uni + Unj) +Op (1) .

For n ≥ 4, define

ZN,n :=
2

N

n−1∑
i=2,i<j

UniUnj +
2

N

n−1∑
i=2,i<j

Uij (Uni + Unj) ,

then we have
√
NAN =

N∑
n=4

ZN,n +Op(1). (A.9)

And because Uij are iid, we have

E [ZN,n| FN,n−1] = 0,

where FN,n, 3 ≤ n ≤ N, is the filtration defined in page 33 with Uii = 0.

Again, we will work with Hall and Heyde (1980)’s Corollary 3.3 to obtain the CLT. By

Lemmas 16, 17 and 18 below, we see that Hall and Heyde (1980)’s (3.38) and (3.40) are

satisfied with p = 2. Therefore, we can conclude by Hall and Heyde (1980)’s Corollary 3.3

that
N∑

n=4

ZN,n√
N

⇒ N
(
0, 2σ4

U

)
,

which together with (A.9) implies the result of Lemma 3.

Lemma 15

E
[
Z2

N,n

∣∣FN,n−1

]
=

2 (n− 2) (n− 3)

N2
σ4
U +

8σ4
U

N2

n−1∑
i=2,i<j

(
Uij

σU

)2
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+
4σ2

U

N2

n−3∑
i=2

n−1∑
j>i,j′>i,j′ ̸=j

UijUij′ +
4σ2

U

N2

n−1∑
j=4

n−2∑
i<j,i′<j,i′ ̸=i

UijUi′j

+
4σ2

U

N2

n−1∑
2=i′<i<j

UijUi′i +
4σ2

U

N2

n−1∑
2=i<j<j′

UijUjj′ .

Proof. We have

Z2
N,n =

(
2

N

n−1∑
i=2,i<j

(UniUnj + Uij (Uni + Unj))

)2

=
4

N2

n−1∑
i=2,i<j

(UniUnj + Uij (Uni + Unj))
2

+
4

N2

n−1∑
i=2,i<j,i′=2,i′<j′,i′ ̸=i or j′ ̸=j

(UniUnj + Uij (Uni + Unj)) (Uni′Unj′ + Ui′j′ (Uni′ + Unj′)) .

We start with the analysis of the first term on the right, and note that

E

[
4

N2

n−1∑
i=2,i<j

(UniUnj + Uij (Uni + Unj))
2

∣∣∣∣∣FN,n−1

]
=

4

N2

n−1∑
i=2,i<j

(
σ4
U + U2

ij

(
2σ2

U

))
=

2 (n− 2) (n− 3)

N2
σ4
U +

8σ2
U

N2

n−1∑
i=2,i<j

U2
ij.

As for the second term on the right, we need to consider the following four cases:

Case I: i′ = i, j′ ̸= j, leading to

4

N2

n−1∑
i=2,i<j,i′=2,i′<j′,i′=i,j′ ̸=j

E [ (UniUnj + Uij (Uni + Unj)) (UniUnj′ + Uij′ (Uni + Unj′))| FN,n−1]

=
4

N2

n−3∑
i=2

n−1∑
j>i,j′>i,j′ ̸=j

UijUij′σ
2
U ;

Case II: i′ ̸= i, j′ = j, leading to

4

N2

n−1∑
i=2,i<j,i′=2,i′<j′,i′ ̸=i,j′=j

E [ (UniUnj + Uij (Uni + Unj)) (Uni′Unj + Ui′j (Uni′ + Unj))| FN,n−1]

=
4

N2

n−1∑
j=4

n−2∑
i<j,i′<j,i′ ̸=i

UijUi′jσ
2
U ;

Case III: i′ < j′ = i < j, leading to

4

N2

n−1∑
2=i′<j′=i<j

E [ (UniUnj + Uij (Uni + Unj)) (Uni′Uni + Ui′i (Uni′ + Uni))| FN,n−1]
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=
4

N2

n−1∑
2=i′<i<j

UijUi′iσ
2
U ;

Case IV: i < j = i′ < j′, leading to

4

N2

n−1∑
2=i<j=i′<j′

E [ (UniUnj + Uij (Uni + Unj)) (UnjUnj′ + Ujj′ (Unj + Unj′))| FN,n−1]

=
4

N2

n−1∑
2=i<j<j′

UijUjj′σ
2
U .

Combining these four cases and the first term gives the result of the lemma.

Lemma 16 E

[∣∣∣∑N
n=4

(
E
[

Z2
N,n

N

∣∣∣FN,n−1

]
− E

[
Z2
N,n

N

])∣∣∣2] = o (1).

Proof. Since
(

1
N

∑N
n=1 an

)2
≤ 1

N

∑N
n=1 a

2
n, the desired result of the lemma follows if

we show

E

[
1

N

N∑
n=4

(
E
[
Z2

N,n

∣∣FN,n−1

]
− E

[
Z2

N,n

])2]
= o(1).

We have

1

σ8
U

E

[
1

N

N∑
n=4

(
E
[
Z2

N,n

∣∣FN,n−1

]
− E

[
Z2

N,n

])2]
=

1

σ8
U

1

N

N∑
n=4

Var
(
E
[
Z2

N,n

∣∣FN,n−1

])
.

Using Lemma 15, it suffices to show that

1

N

N∑
n=4

Var

(
8σ4

U

N2

n−1∑
i=2,i<j

(
Uij

σU

)2
)

= o (1) , (A.10)

1

N

N∑
n=4

Var

(
4σ2

U

N2

n−3∑
i=2

n−1∑
j>i,j′>i,j′ ̸=j

UijUij′

)
= o (1) , (A.11)

1

N

N∑
n=4

Var

(
4σ2

U

N2

n−1∑
j=4

n−2∑
i<j,i′<j,i′ ̸=i

UijUi′j

)
= o (1) , (A.12)

1

N

N∑
n=4

Var

(
4σ2

U

N2

n−1∑
2=i′<i<j

UijUi′i

)
= o (1) , (A.13)

1

N

N∑
n=4

Var

(
4σ2

U

N2

n−1∑
2=i<j<j′

UijUjj′

)
= o (1) . (A.14)
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In order to prove (A.10), we note that by the iid of Uij,

1

N

N∑
n=4

Var

(
8σ4

U

N2

n−1∑
i=2,i<j

(
Uij

σU

)2
)

=
C

N5

N∑
n=4

Var

(
n−1∑

i=2,i<j

(
Uij

σU

)2
)

=
C

N5

N∑
n=4

n−1∑
i=2,i<j

Var

((
Uij

σU

)2
)

= O
(
N−2

)
= o (1) .

In order to prove (A.11), we note that Uij are iid, so

1

N

N∑
n=4

Var

(
4σ2

U

N2

n−3∑
i=2

n−1∑
j>i,j′>i,j′ ̸=j

UijUij′

)
=

C

N5

N∑
n=4

E

(n−3∑
i=2

n−1∑
j>i,j′>i,j′ ̸=j

Uij

σU

Uij′

σU

)2


=
C

N5

N∑
n=4

n−3∑
i=2

n−1∑
j>i,j′>i,j′ ̸=j

E

[(
Uij

σU

)2(
Uij′

σU

)2
]

=
C

N5

N∑
n=4

n−3∑
i=2

n−1∑
j>i,j′>i,j′ ̸=j

Var

(
Uij

σU

)
Var

(
Uij′

σU

)
= O

(
N−1

)
= o (1) ,

where the first equality holds because E
(∑n−3

i=2

∑n−1
j>i,j′>i,j′ ̸=j

Uij

σU

Uij′

σU

)
= 0 due to E(Uij) = 0

and the iid of Uij, the second equality holds because we know that the cross product terms

are zero due to the fact that i < j, i < j′ and j ̸= j′, the third equality holds because

E (Uij) = 0 and Uij are iid, and the fourth equality holds because we recognize that∑n−3
i=2

∑n−1
j>i,j′>i,j′ ̸=j Var

(
Uij

σU

)
Var

(
Uij′

σU

)
= O (n3) uniformly. We can prove (A.12) - (A.14)

similarly.

Lemma 17
∑N

n=4E
(
E
[

Z2
N,n

N

∣∣∣FN,n−1

])
= 2σ4

U + o (1).

Proof. Note that the last four terms in Lemma 15 have zero expectations due to the

iid of Uij. Therefore, Lemma 15 implies that

1

σ4
U

N∑
n=4

E

(
E

[
Z2

N,n

N

∣∣∣∣FN,n−1

])
=

1

σ4
U

N∑
n=4

4σ4
U

N3

(n− 2) (n− 3)

2
+

1

σ4
U

N∑
n=4

(
8σ4

U

N3

n−1∑
i=2,i<j

E

[(
Uij

σU

)2
])

=
2

3

(N − 1) (N − 2) (N − 3)

N3
+

8

N3

N∑
n=4

(n− 2) (n− 3)

2

51



=
2

3

(N − 1) (N − 2) (N − 3)

N3
+

4

3

(N − 1) (N − 2) (N − 3)

N3

→ 2,

where in the second equality we used the definition of σ2
U , and in the third equality we

used the fact that
∑N

n=4(n− 2)(n− 3) = (N − 1)(N − 2)(N − 3)/3.

Lemma 18
∑N

n=4E
[
Z4
N,n

N2

]
= o (1) .

Proof. We rewrite

ZN,n =
2

N

n−1∑
i=2,i<j

UniUnj +
2

N

n−1∑
i=2,i<j

Uij (Uni + Unj)

:=
2

N

n−1∑
j=3

Vjn,1 +
2

N

n−2∑
j=2

Vjn,2 +
2

N

n−1∑
j=3

Vjn,3,

where we use the symmetry Uij = Uji, and define

Vjn,1 :=

(
j−1∑
i=2

Uin

)
Ujn := Wjn,1Ujn,

Vjn,2 :=

(
n−1∑

i=j+1

Uij

)
Ujn := Wjn,2Ujn,

Vjn,3 :=

(
j−1∑
i=2

Uji

)
Ujn := Wjn,3Ujn.

The desired result
∑N

n=4E
[
Z4
N,n

N2

]
= o (1) follows if we show 1

N6

∑N
n=4 E

[(∑n−2
j=2 Vjn,2

)4]
=

o(1) and 1
N6

∑N
n=4E

[(∑n−1
j=3 Vjn,m

)4]
= o(1) with m = 1, 3, which follow if we show

E

(n−2∑
j=2

Vjn,2

)4
 = O(n4), and E

(n−1∑
j=3

Vjn,m

)4
 = O(n4), (A.15)

where m = 1, 3.

First note that there is a generic constant C such that

E
[
(Wjn,1)

4] ≤ Cj2, E
[
(Wjn,2)

4] ≤ C (n− j)2 , E
[
(Wjn,3)

4] ≤ Cj2,
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because each Wjn,m (m = 1, 2, 3) is a sum of (j − 2) or (n − j − 1) iid random variables

with mean zero and finite fourth moment. Our proof of (A.15) consists of three parts.

Part (a): We show E

[(∑n−1
j=3 Vjn,1

)4]
= O (n4).

Notice that

E [Vj1n,1Vj2n,1Vj3n,1Vj4n,1] = 0

unless one of the following cases happens. (a1) : j1 = j2 = j3 = j4; (a2) : three indices are

equal to each other and larger than the remaining one index (i.e., (j1 = j3 = j4) > j2);

(a3) : two indices are equal to each other, the remaining two indices are equal to each

other, and the pairs take different values (i.e., (j1 = j3) ̸= (j2 = j4)); or (a4) : two indices

are equal to each other, remaining two indices are different from each other and from the

first two identical indices (i.e., (j1 = j4) > j2 > j3). Recall that the expectation is zero if

j3 > (j1 = j4) > j2, j3 > j2 > (j1 = j4), or j1 > j2 > j3 > j4.

Case (a1) : We have

n−1∑
j=3

E
[
W 4

jn,1U
4
jn

]
=

n−1∑
j=3

E
[
W 4

jn,1

]
E
[
U4
jn

]
= O

(
n−1∑
j=3

j2

)
= O(n3),

as desired.

Case (a2) : By the Hölder’s inequality, we have

n−1∑
j1=3

n−1∑
j2=3,<j1

E[(Wj1n,1Uj1n)
3(Wj2n,1Uj2n)]

≤
n−1∑
j1=3

n−1∑
j2=3,<j1

(
E[(Wj1n,1Uj1n)

3]4/3
)3/4 (

E
[
(Wj2n,1Uj2n)

4
])1/4

≤

[
n−1∑
j1=3

(
E[(Wj1n,1Uj1n)

4]
)3/4][n−1∑

j2=3

(
E
[
(Wj2n,1Uj2n)

4
])1/4]

=

[
n−1∑
j=3

(
E
[
W 4

jn,1

])3/4 (
E
[
U4
jn

])3/4][n−1∑
j=3

(
E
[
W 4

jn,1

])1/4 (
E
[
U4
jn

])1/4]

= O

(
n−1∑
j=3

j3/2

)
O

(
n−1∑
j=3

j1/2

)
= O

(
n5/2 1

n

n−1∑
j=3

(
j

n

)3/2
)
O

(
n3/2 1

n

n−1∑
j=3

(
j

n

)1/2
)

= n4O

(∫ 1

0

x3/2dx

)
O

(∫ 1

0

x1/2dx

)
= n4O(1)O(1) = O(n4),
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as desired.

Case (a3) : By using a similar argument in the proof of Case (a2) with the Cauchy-

Schwarz’s inequality instead of the Hölder’s inequality, we can show that

n−1∑
j1=3

n−1∑
j2=3, ̸=j1

E[(Wj1n,1Uj1n)
2(Wj2n,1Uj2n)

2] ≤ O(n4).

Case (a4) : We then have to deal with

n−1∑
j1=3

n−1∑
j2=3,<j1

n−1∑
j3=3,<j1,<j2

E
[
V 2
j1n,1

Vj2n,1Vj3n,1

]
=

n−1∑
j3<j2<j1

j1−1∑
i1=2

j1−1∑
i′1=2

j2−1∑
i2=2

j3−1∑
i3=2

E
[
Ui1nUi′1n

Ui2nUi3nU
2
j1n

Uj2nUj3n

]
=

n−1∑
j3<j2<j1

j1−1∑
i1=2

j1−1∑
i′1=2

j2−1∑
i2=2

j3−1∑
i3=2

E
[
Ui1nUi′1n

Ui2nUi3nUj2nUj3n

]
E
[
U2
j1n

]
.

We further consider several cases in case (a4):

• Case I: Let’s first assume that i2 = i3. If this is the case, we have i2 = i3 < j3 < j2,

so we can have E
[
Ui1nUi′1n

Ui2nUi3nUj2nUj3n

]
̸= 0 only if (i1, i

′
1) = (j2, j3) or (i

′
1, i1) =

(j2, j3). This contributes

n−1∑
j3<j2<j1

j3−1∑
i3=2

E
[
U2
i3n

U2
j2n

U2
j3n

]
E
(
U2
j1n

)
= O

(
n−1∑
j1=4

j1−1∑
j2=3

j2−1∑
j3=2

(j3 − 2)

)
= O

(
n4
)

to the sum.

• Case II: Let’s assume that i2 < i3. If this is the case, we have i2 < i3 < j3 < j2, so

we have E
[
Ui1nUi′1n

Ui2nUi3nUj2nUj3n

]
= 0 regardless of the value of (i1, i

′
1).

• Case III: Let’s assume that i2 > i3.

– Case III (1): If we have i2 < j3, we have i3 < i2 < j3 < j2, E
[
Ui1nUi′1n

Ui2nUi3nUj2nUj3n

]
=

0 regardless of the value of (i1, i
′
1).

– Case III (2): Let’s assume that i2 > i3, and j3 ≤ i2, which means that i3 <

j3 ≤ i2 < j2.
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∗ Case III (2-a): Let’s assume that i2 > i3, and j3 < i2, which means that

i3 < j3 < i2 < j2. If this is the case, we would haveE
[
Ui1nUi′1n

Ui2nUi3nUj2nUj3n

]
=

0 regardless of the value of (i1, i
′
1).

∗ Case III (2-b): Let’s assume that i2 > i3, and j3 = i2, which means that i3 <

j3 = i2 < j2. If this is the case, we would haveE
[
Ui1nUi′1n

Ui2nUi3nUj2nUj3n

]
̸=

0 only if (i1, i
′
1) = (i3, j2) or (i1, i

′
1) = (j2, i3). This contributes

n−1∑
j3<j2<j1

j3−1∑
i1=2

E
[
U2
i1n

U2
j2n

U2
j3n

]
E
(
U2
j1n

)
+

n−1∑
j3<j2<j1

j3−1∑
i3=2

E
[
U2
i3n

U2
j2n

U2
j3n

]
E
(
U2
j1n

)
= O

(
n−1∑
j1=4

j1−1∑
j2=3

j2−1∑
j3=2

(j3 − 2)

)
+O

(
n−1∑
j1=4

j1−1∑
j2=3

j2−1∑
j3=2

(j3 − 2)

)
= O

(
n4
)
.

Part (b): We show E

[(∑n−1
j=3 Vjn,2

)4]
= O(n4).

Notice that

E [Vj1n,2Vj2n,2Vj3n,2Vj4n,2] = 0

unless one of the following cases happens. (b1) : j1 = j2 = j3 = j4; or (b2) : two indices

are equal to each other, the remaining two indices are equal to each other, and the pairs

take different values (i.e., (j1 = j3) ̸= (j2 = j4)). The reason is as follows. Suppose that

one index, say j1, is different from the other three indices, say j2, j3, j4. Then, Uj1,n is

independent of the rest, and so we have

E [Vj1n,2Vj2n,2Vj3n,2Vj4n,2]

= E [Wn−1j1,2Wn−1j2,2Uj2nWn−1j3,2Uj3,nWn−1j4,2Uj4,n]E [Uj1,n] = 0.

The desired results in the cases (b1) and (b2) follow by the similar arguments used in cases

(a1) and (a3), respectively.

Part (c): The desired result E

[(∑n−1
j=3 Vjn,3

)4]
= O(n4) follows by the same argument

used in Part (b).
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B Detailed Calculations for Section 3

B.1 Regularity Conditions

Assumption 1 The observed data Zi (i = 1, . . . , N) are independently and identically

distributed. Zi belongs to a measure space Z and consists of two subvectors Xi and Yi

such that Zi = (Y ′
i , X

′
i)

′, and the conditional probability density function of Yi given Xi is

h(y|x, θ0, η), where θ0 is a q-dimensional parameter and η is a scalar parameter.

Let θ ∈ Θ ⊂ Rq. Let γ := (θ′, η)′ and γ ∈ Γ. Let θj (j = 1, . . . , q) denote the jth

element of θ.

Assumption 2 For all θ in Θ and almost all z in Z, h(y|x, θ, 0) = f(y|x, θ).

Assumption 3 Let εi be a random variable that is independent of Xi and has a probability

density function k(·) such that
∫
ek(e)de = 0 and

∫
e2k(e)de = σ2

ε . Define h(y|x, γ) :=

f(y|x, (θ1 + ηε, θ2, . . . , θq)
′).

Assumption 3′ Let ε∗i be a random variable with a conditional probability density function

k(·|x) such that
∫
ek(e|x)de = 0 for all x in the support X of X and supx∈X

∫
e2k(e|x)de <

∞. Let µ(x) denote a function of x and define h(y|x, γ) := f(y|x, (θ1+η2µ(x)+ηε∗, θ2, . . . , θq)
′).

Remark 8 Although h(y|x, γ) in Assumptions 3 and 3′ is conceptually different from that

in Assumptions 1 and 2, the former, when integrating out ε (or ε∗), satisfies the conditions

in Assumptions 1 and 2. For this reason, we will slightly abuse the notation and use

h(y|x, γ) to denote both.

For a matrix A = [aij], let |A| = maxi,j |aij|. Let fX(x) denote the marginal probability

density function of Xi.

Assumption 4 For almost all z in Z, ln f(y|x, θ) is twice continuously differentiable with

respect to θ1, and f(y|x, θ), ln f(y|x, θ), ∂ ln f(y|x, θ)/∂θ1 and ∂2 ln f(y|x, θ)/∂θ21 are all

measurable functions of z for each θ in Θ, where Θ is a compact subsets of Rq. For
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almost all z in Z, ln f(y|x, θ), ∂ ln f(y|x, θ)/∂θ1 and ∂2 ln f(y|x, θ)/∂θ21 are all contin-

uously differentiable with respect to θ. ∂ ln f(y|x, θ)/∂θ, ∂ (∂ ln f(y|x, θ)/∂θ1) /∂θ and

∂ (∂2 ln f(y|x, θ)/∂θ21) /∂θ are all measurable functions of z for each θ in Θ. fX(x) is

a measurable function of z for each θ in Θ. θ0 is an element of the interior of Θ.

Assumption 5 There exist measurable functions a(z) and b(z) such that |f(y|x, θ)fX(x)| ≤

a(z) and |∂f(y|x, θ)/∂θ|, |∂2f(y|x, θ)/∂θ21|, |∂2 ln f(y|x, θ)/∂θ21|2, |∂ ln f(y|x, θ)/∂θ1|4, |∂3

ln f(y|x, θ)/∂θ21∂θ′|, |∂ ln f(y|x, θ)/∂θ| and |∂2 ln f(y|x, θ)/∂θ∂θ′| are each less than b(z).

Further, it is the case that
∫
a(z)dz < +∞ and

∫
b(z)a(z)dz < +∞, and that the set

{z : f(y|x, θ) > 0} is independent of θ.

Assumption 6 If θ ̸= θ0, then A := {z : f(y|x, θ) ̸= f(y|x, θ0)} satisfies
∫
A
f(y|x, θ0)dy >

0.

We write g(z, θ) = (m(z, θ)′, s(z, θ)′)′, where m(z, θ) is defined in equation (20) and

s(z, θ) = s (y|x, θ) := ∂ ln f (y|x, θ)/ ∂θ denotes the score. Define

V :=

∫
g (z, θ0) g (z, θ0)

′ f (y|x, θ0) fX (x) dz.

Assumption 7 The matrix V is nonsingular.

Now we define some general notation. Suppose that g(z, θ) is a scalar function, h(z, γ)

is a density of Z with parameter γ, and Zi (i = 1, . . . , N) is a sequence of observations from

h(z, γ), where an extra subscript γ on Zi is suppressed for notational convenience. Define

gN(θ) := N−1
∑N

i=1 g(Zi, θ), and when the expectation exists, ϕ(θ, γ) :=
∫
g(z, θ)h(z, γ)dz.

This notation does not refer to the specific functions defined elsewhere in this paper, and

it will be used only in the following lemma, which is a restatement of Lemma A.1 in Newey

(1985)29 and is helpful for the proof of Theorems 3 and 4.

Lemma B.1 Suppose that, for each θ in Θ, g(z, θ) is a measurable function of z, for

almost all z in Z a continuous function of θ, and Θ is compact. Suppose that, for each γ

29We slightly modify the notation in Newey (1985) to suit our paper.
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in Γ, h(z, γ) is a measurable probability density on Z, for almost all z in Z a continuous

function of γ, and Γ is compact. Suppose that there exist measurable functions a(z) and

b(z) such that h(z, γ) ≤ a(z) and |g(z, θ)| ≤ b(z) with∫
b(z)a(z)dz < +∞,

∫
a(z)dz < +∞.

Then ϕ(θ, γ) exists and is continuous on Θ × Γ. Suppose, in addition, that Z1, . . . , ZN

are independent observations with density h(z, γN) where limN→∞ γN = γ0. Then for all

ε > 0,

lim
N→∞

P

(
sup
Θ

|gN(θ)− ϕ(θ, γ0)| ≥ ε

)
= 0. (B.1)

Proof. See Appendix of Newey (1985).

B.2 Proof of Theorem 3

For ease of reading, we will follow Newey (1985, Proof of Lemma 2.1) as closely as possible.

Step 1 Let

ϕη (θ) :=

∫
g (z, θ)h (y|x, θ0,

√
η) fX (x) dz, (B.2)

V̄η :=

∫
g (z, θ0) g (z, θ0)

′ h (y|x, θ0,
√
η) fX (x) dz − ϕη(θ0)ϕη(θ0)

′. (B.3)

By Assumptions 4 and 5, the elements of g(z, θ) and the density h(y|x, θ,√η)fX(x) satisfy

the conditions of Lemma B.1, implying that ϕη(θ) exists and is continuous on Γ. Then by

Assumption 3, we have

lim
η→0

ϕη(θ0) = ϕ0(θ0), and lim
η→0

V̄η = V. (B.4)

Due to Assumptions 3 - 5, the dominated convergence theorem (e.g., Bartle, 1966, Corol-

lary 5.9) allows one to differentiate the integrand function in the identity
∫
f(y|x, θ)fX(x)

dz = 1, which yields the following identities for θ in the interior of Θ:

E [s(Yi|Xi, θ)] =

∫
∂f(y|x, θ)

∂θ
fX(x)dz =

∫
s(y|x, θ)f(y|x, θ)fX(x)dz = 0,

58



and

E [m(Zi, θ)] =

∫
∂2f(y|x, θ)/∂θ21

f(y|x, θ)
f(y|x, θ)fX(x)dz = 0.

In light of Assumption 2, these identities evaluating at θ0 immediately imply that

ϕ0(θ0) = E [g(Zi, θ0)] =

∫
g (z, θ0) f (y|x, θ0) fX (x) dz = 0. (B.5)

By Assumption 5, functions [m(z, θ)]2 and s(y|x, θ)s(y|x, θ)′ satisfy the conditions of

Lemma B.1, and so does s(y|x, θ)m(z, θ) by the Cauchy-Schwarz inequality.

Step 2 In this step, we will first establish a central limit theorem (CLT) for N−1/2
∑N

i=1

(g(Zi, θ0) − ϕηN (θ0)) under arbitrary sequence of DGP’s with ηN → 0 as N → ∞. De-

fine a function Wη(z) := λ′ [g(z, θ0)− ϕη(θ0)], and let Wη,i := Wη(Zi) for i = 1, . . . , N ,

where λ is a (q + 1)-dimensional non-zero vector. By the definitions of ϕη(θ) and V̄η in

(B.2) and (B.3), we know that Wη,i has mean zero and variance λ′V̄ηλ, which is pos-

itive for small η by Assumption 7 and (B.4). For any δ > 0, define the set Aδ,η :={
z : |Wη(z)| ≥ δ

(
Nλ′V̄ηλ

)1/2}
.30 Note that Zi (i = 1, . . . , N) are identically distributed,

so for any δ > 0, we have

(
Nλ′V̄ηλ

)−1
N∑
i=1

∫
|Wη,i|≥δ(Nλ′V̄ηλ)

1/2
|Wη,i|2h(Yi|Xi, θ0,

√
η)fX(Xi)dZi

=
(
λ′V̄ηλ

)−1
∫
Aδ,η

|Wη(z)|2h(y|x, θ0,
√
η)fX(x)dz

≤
(
λ′V̄ηλ

)−1
2(q + 1)|λ|2

(
|ϕη(θ0)|2

∫
Aδ,η

a(z)dz +

∫
Aδ,η

b(z)a(z)dz

)
, (B.6)

where the last inequality holds by Assumption 5 and the simple inequality that (a+ b)2 ≤

2(a2 + b2) for any a, b ∈ R. By (B.4) and (B.5), limη→0 ϕη(θ0) = 0. By (B.4), we

have limη→0 λ
′V̄ηλ = λ′V λ > 0, so Aδ,η converges to an empty set as N → ∞, im-

plying that limN→∞
∫
Aδ,η

a(z)dz = 0 and limN→∞
∫
Aδ,η

b(z)a(z)dz = 0. Therefore, (B.6)

implies that the Lindberg condition is satisfied, and by the Lindberg-Feller CLT (e.g.,

p.128 of Rao, 1971), we have
(
Nλ′V̄ηλ

)−1/2∑N
i=1Wη,i ⇒ N(0, 1), implying in turn that

30Let Aδ,η = ∅ if λ′V̄ηλ < 0.
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N−1/2
∑N

i=1Wη,i ⇒ N(0, λ′V λ). This, together with the Cramér-Wold device, implies that

for arbitrary sequence of DGP’s with ηN → 0 as N → ∞,

N−1/2

N∑
i=1

(g (Zi, θ0)− ϕηN (θ0)) ⇒ N(0, V ).

Then, we apply this CLT to a particular sequence ηN = N−1/2 and get

N−1/2

N∑
i=1

(g (Zi, θ0)− ϕN−1/2 (θ0)) ⇒ N(0, V ). (B.7)

Step 3 Due to Assumptions 3 - 5 and the dominated convergence theorem, we calculate

the derivative of
∫
g (z, θ0)h (y|x, θ0, η) fX (x) k (e) dedz with respect to η as follows

KR :=
∂

∂η

(∫
g (z, θ0) fX (x)

∫
f (y|x, θ0 +

√
ηeι) k (e) dedz

)∣∣∣∣
η=0

(B.8)

=

∫ ∫
g (z, θ0) fX (x)

∂f(y|x,θ0+
√
ηeι)

∂θ1
ek (e) dedz

2
√
η

∣∣∣∣∣∣
η=0

= lim
η→0

√
η

2

∫ ∫
g (z, θ0) fX (x)

∂f(y|x,θ0+
√
ηeι)

∂θ1
ek (e) dedz

η
.

Using the L’Hôpital’s rule, we get

KR = lim
η→0

 1
4
√
η

∫ ∫
g (z, θ0) fX (x)

∂f(y|x,θ0+
√
ηeι)

∂θ1
ek (e) dedz

+
√
η

2
1

2
√
η

∫ ∫
g (z, θ0) fX (x)

∂2f(y|x,θ0+
√
ηeι)

∂θ21
e2k (e) dedz


1

=
KR

2
+

1

4
lim
η→0

∫ ∫
g (z, θ0) fX (x)

∂2f
(
y|x, θ0 +

√
ηeι
)

∂θ21
e2k (e) dedz,

from which we obtain

KR =
1

2

∫ ∫
g (z, θ0) fX (x)

∂2f (y|x, θ0)
∂θ21

e2k (e) dedz

=
σ2
ε

2

∫
g (z, θ0) fX (x)

∂2f (y|x, θ0)
∂θ21

dz

=
σ2
ε

2

∫
g (z, θ0)

∂2f (y|x, θ0)/ ∂θ21
f (y|x, θ0)

f (y|x, θ0) fX (x) dz

=
σ2
ε

2
E

[
g (Zi, θ0)

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]
,
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where we recall σ2
ε =

∫
e2k (e) de. Recalling that g(z, θ) = (m(z, θ)′, s(z, θ)′)′ helps us

obtain the following:

KR =
σ2
ε

2


E

[(
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)

)2
]

E

[
s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

]
 =

σ2
ε

2

 κ1

κ2

 .

Recall the definition of ϕη(θ) in (B.2) and apply the mean value theorem to (B.8) with

ηN = N−1/2, we get

KR = lim
N→∞

N1/2

(∫
g (z, θ0) fX(x)

∫
f
(
y|x, θ0 +

√
N−1/2eι

)
k (e) dedz −

∫
g (z, θ0) f (z| θ0) dz

)
= lim

N→∞
N1/2

(∫
g (z, θ0)h

(
y|x, θ0,

√
N−1/2

)
fX(x)dz −

∫
g (z, θ0)h (y|x, θ0, 0) fX(x)dz

)
= lim

N→∞
N1/2 (ϕN−1/2 (θ0)− ϕ0 (θ0)) .

Combined with the CLT in (B.7), we see that this implies that
√
NgN (θ0)

d.−→ N (KR, V ),

where we define gN(θ) := N−1
∑N

i=1 g(Zi, θ).
31

Remark 9 We can in principle address heteroscedasticity as long as E [ε|x] = 0 is satis-

fied. This of course implies that KR should be redefined as

1

2


E

{
E [ε2i |Xi]

(
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)

)2
}

E

{
E [ε2i |Xi] s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

}
 ,

with corresponding changes in the following steps.

Step 4 We now show thatN1/2
(
θ̄N − θ0

)
= − (DH)−1DN1/2gN (θ0)+op (1), whereD :=

[0, Iq] and H := E [∂g (Zi, θ0)/ ∂θ
′]. By the mean value theorem, we get N1/2gN

(
θ̄N
)
=

N1/2gN (θ0) +
[
∂gN

(
θ̇N

)/
∂θ′
]
N1/2

(
θ̄N − θ0

)
for some θ̇N on the line segment connect-

ing θ̄N and θ0. By Assumptions 4 and 5, we know that h(y|x, γ)fX(x) and the con-

stituent elements of ∂gN(θ̇N)/∂θ
′ satisfy the conditions of Lemma B.1, implying that

31Note that gN (θ) and g(z, θ) here are different from those introduced before Lemma B.1. The former

are based on the specific functions m(z, θ) and s(z, θ) used discussed in this paper, while the latter are

generic notation used only to state Lemma B.1, i.e., Lemma A.1 in Newey (1985).
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∂gN(θ̇N)
/
∂θ′

p.−→ E [∂g (Zi, θ0)/ ∂θ
′]. This, combined with the standard

√
N -consistency

of the MLE θ̄N , implies that N1/2gN
(
θ̄N
)
= N1/2gN (θ0) +HN1/2

(
θ̄N − θ0

)
+ op (1). Be-

cause the MLE satisfies 0 = DgN
(
θ̄N
)
by definition, it follows that 0 = DN1/2gN (θ0) +

DHN1/2
(
θ̄N − θ0

)
+op (1), from which we obtainN1/2

(
θ̄N − θ0

)
= − (DH)−1DN1/2gN (θ0)+

op (1).

By the definition of g(z, θ) and H, we note that

H =

 E
[
∂m(Zi,θ0)

∂θ′

]
E
[
∂s(Yi|Xi,θ0)

∂θ′

]
 =

 E
[
∂m(Zi,θ0)

∂θ′

]
−I

 .

We now simplify the following coordinates of H,

E

[
∂m (Zi, θ0)

∂θ

]
= E

[
∂

∂θ

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]
,

a bit. For this purpose, we start with the observation that

0 =

∫
∂2f (y|x, θ)/ ∂θ21

f (y|x, θ)
f (y|x, θ) dy

for all θ. Assumptions 3 - 5 and the dominated convergence theorem allow differentiating

both sides with respect to θ and getting

0 =

∫
∂

∂θ

∂2f (y|x, θ)/ ∂θ21
f (y|x, θ)

f (y|x, θ) dy+
∫

∂2f (y|x, θ)/ ∂θ21
f (y|x, θ)

∂f (y|x, θ)/ ∂θ
f (y|x, θ)

f (y|x, θ) dy,

or

0 = E

[
∂

∂θ

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]
+ E

[
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)
s (Yi|Xi, θ0)

]
.

We therefore conclude that

E

[
∂m (Zi, θ0)

∂θ

]
= −E

[
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)
s (Yi|Xi, θ0)

]
= −κ2,

and hence

H =

 −κ′
2

−I

 .

Remark 10 Note that − (DH)−1 = I−1. Combined with N1/2gN (θ0) ⇒ N (KR, V ),

which implies that DN1/2gN (θ0) ⇒ N
(

σ2
ε

2
κ2, I

)
, we can see that N1/2

(
θ̄N − θ0

)
⇒

N
(

σ2
ε

2
I−1κ2, I−1

)
. Therefore, if κ2 = 0, the MLE is asymptotically unbiased even un-

der the alternative of random effects.
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Step 5 We now establish the asymptotic distribution of mN

(
θ̄N
)
. For this purpose,

we note that
√
NmN

(
θ̄N
)
= L

√
NgN

(
θ̄N
)
for L := [I1, 0]. We also saw in the previous

step that N1/2gN
(
θ̄N
)
= N1/2gN (θ0) + HN1/2

(
θ̄N − θ0

)
+ op (1), and N1/2(θ̄N − θ0) =

−(DH)−1DN1/2gN(θ0) + op(1). Let sN(θ) := N−1
∑N

i=1 s(Zi, θ). Therefore, we see that

√
NmN

(
θ̄N
)
= L

√
NgN

(
θ̄N
)

= L
√
NgN (θ0)− LH (DH)−1D

√
NgN (θ0) + op (1)

= L
(
Iq+1 −H (DH)−1D

)√
NgN (θ0) + op (1)

= [I1, 0]
√
NgN (θ0)− [I1, 0]H (−I)−1

√
NsN (θ0) + op (1)

=
√
NmN (θ0)− κ′

2I−1
√
NsN (θ0) + op (1)

=
[
I1,−κ′

2I−1
]√

NgN (θ0) + op (1) ,

while in Step 3 we showed
√
NgN (θ0) ⇒ N (KR, V ). Because [I1,−κ′

2I−1]V [I1,−κ′
2I−1]

′
=

κ1 − κ′
2I−1κ2, it follows that

√
NmN

(
θ̄N
)
= L

√
NgN

(
θ̄N
)
⇒ N

([
I1,−κ′

2I−1
]
KR, κ1 − κ′

2I−1κ2

)
(B.9)

as desired, since [I1,−κ′
2I−1]KR = σ2

ε

2
(κ1 − κ′

2I−1κ2).

B.3 Proof of Theorem 4

The proof is essentially identical to the proof of Theorem 3, except that we need to

calculate the counterpart of KR in Step 3. We begin by considering the special case where

the neglected heterogeneity takes the form

f

(
y

∣∣∣∣x,(θ0,1 + µ (x)

N1/2
, θ0,2, . . . , θ0,q

))
.

Note that there is no other random variable yet (such as ε∗). We now would like to calculate

the counterpart of KR. Due to Assumptions 3′, 4, 5 and the dominated convergence

theorem, we have

KF :=
∂

∂η

(∫
g (z, θ0) fX (x) f (y|x, θ0 + ηµ (x) ι) dz

)∣∣∣∣
η=0
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=

∫
g (z, θ0) fX (x)

∂f (y|x, θ0)
∂θ1

µ (x) dz

=

∫
g (z, θ0) s1 (y|x, θ0) f (y|x, θ0) fX (x)µ (x) dz

= E [g (Zi, θ0) s1 (Yi|Xi, θ0)µ (Xi)] ,

where s1(y|x, θ0) is the first coordinate of the score function. By applying the mean value

theorem with ηN = N−1/2 as before, we get KF = limN→∞N1/2 (ϕN−1/2 (θ0)− ϕ0 (θ0)).

Note that KF can be written as

KF := E

 ∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

s1 (Yi|Xi, θ0)µ (Xi)

s (Yi|Xi, θ0) s1 (Yi|Xi, θ0)µ (Xi)


=

 E

{
E

[
∂2f(Yi|Xi,θ0)/∂θ21

f(Yi|Xi,θ0)
s1 (Yi|Xi, θ0)

∣∣∣∣Xi

]
µ (Xi)

}
E {E [s (Yi|Xi, θ0) s1 (Yi|Xi, θ0)|Xi]µ (Xi)}

 .

The rest of Newey (1985)’s analysis still applies, in particular, (2.6) and (2.7) in Newey

(1985) hold.32 We therefore have (in his notation) LT = L = [I1, 0], D = [0, Iq], P =

Iq+1 −H (DH)−1D, K = KF , and we consider
√
N instead of

√
T . Because DH = −I,

Dg (z, θ0) = s (z, θ0), we still have (in our notation)

L
√
NgN

(
θ̄N
)
= LP

√
NgN (θ0) + op (1)

= L
(
Iq+1 −H (DH)−1D

)√
NgN (θ0) + op (1)

= [I1, 0]
√
NgN (θ0)− [I1, 0]H (−I)−1

√
NsN (θ0) + op (1)

=
√
NmN (θ0)− κ′

2I−1
√
NsN (θ0) + op (1)

=
[
I1,−κ′

2I−1
]√

NgN (θ0) + op (1) ,

while
√
NgN (θ0) ⇒ N (KF , V ) .

Because we still have

[
I1,−κ′

2I−1
]
V
[
I1,−κ′

2I−1
]′
= κ1 − κ′

2I−1κ2,

32Newey (1985)’s (2.6) is
√
TLT gT

(
θ̄T
)
= LP

√
TgT (θ0)+ op (1), and (2.7) is

√
TgT (θ0) ⇒ N (Kδ, V ).
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it follows that

√
NmN

(
θ̄N
)
= L

√
NgN

(
θ̄N
)
⇒ N

([
I1,−κ′

2I−1
]
KF , κ1 − κ′

2I−1κ2

)
. (B.10)

We now consider the fixed effects (23). After all, the whole calculation of KR was

based on the derivative of f
(
y|x,

(
θ0,1 + ηµ (x) +

√
ηε, θ0,2, . . . , θ0,q

))
and note that the

derivative should be the sum of the derivatives of f (y|x, (θ0,1 + ηµ (x) , θ0,2, . . . , θ0,q)) and

f(y|x, (θ0,1 +
√
ηε, θ0,2, . . . , θ0,q)). The asymptotic bias is then equal to the sum of two

asymptotic biases in (B.9) and (B.10):

√
NmN

(
θ̄N
)
= L

√
NgN

(
θ̄N
)
⇒ N

([
I1,−κ′

2I−1
]
(KF +K∗

R) , κ1 − κ′
2I−1κ2

)
,

where

K∗
R :=

1

2


E

{
E
[
(ε∗i )

2
∣∣Xi

]( ∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

)2
}

E

{
E
[
(ε∗i )

2
∣∣Xi

]
s (Yi|Xi, θ0)

∂2f(Yi|Xi,θ0)/∂θ21
f(Yi|Xi,θ0)

}


is a heteroskedasticity-robust version of KR based on ε∗i . (See Remark 9.)

B.4 In-Depth Analysis of the Linear Model

Note that the fixed effects can be decomposed into two components, µ (Xi) and ε∗i . Their

distinct roles are best understood by considering a linear panel data model

Yit = X∗′
it β0 + αN,i + vit, i = 1, . . . , N, t = 1, . . . , T,

where αN,i = α0 under the null and αN,i = α0+N−1/2µ (xi)+N−1/4ε∗i under the alternative.

It is clear that the correlation between xit and µ (xi) induces the bias in the OLS (i.e.,

MLE), while the presence of ε∗i does not affect the unbiasedness property of the OLS.

Although even ε∗i induces the MLE to be biased in general nonlinear models, the distinctive

roles are quite clear in linear models. It turns out that the BP test does not have any

power against the presence of µ (xi) in linear models. This is because in linear models, we

have

E

[
∂2f (Yi|Xi, θ0)/ ∂θ

2
1

f (Yi|Xi, θ0)
s1 (Yi|Xi, θ0)

∣∣∣∣Xi

]
= 0,
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so that the first component of KF is equal to 0, and it can be shown that

κ2 = E

[
s (Yi|Xi, θ0)

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]

= E

( 1

σ2
v

T∑
t=1

Xit (Yit − α0 −X∗′
it β0)

)− T

σ2
v

+

(
1

σ2
v

T∑
t=1

(Yit − α0 −X∗′
it β0)

)2
 = 0,

(B.11)

leading to the implication [
I1,−κ′

2I−1
]
KF = 0.

Remark 11 Equation (B.11) holds because for linear models, we have

ln f (Yi|Xi, θ) = C − 1

2σ2
v

T∑
t=1

(Yit − α−X∗′
it β)

2
,

where C is a constant, so

s (Yi|Xi, θ) =
1

σ2
v

T∑
t=1

Xit (Yit − α−X∗′
it β) , and

∂2 ln f (Yi|Xi, θ)

∂θ∂θ′
= − 1

σ2
v

T∑
t=1

XitX
′
it.

In particular, we have

s1 (Yi|Xi, θ) =
∂ ln f (Yi|Xi, θ)

∂θ1
=

1

σ2
v

T∑
t=1

(Yit − α−X∗′
it β) , and

∂2 ln f (Yi|Xi, θ)

∂θ21
= − T

σ2
v

.

We therefore see that

∂2f (Yi|Xi, θ)/ ∂θ
2
1

f (y|x, θ)
=

∂2 ln f (Yi|Xi, θ)

∂θ21
+

(
∂ ln f (Yi|Xi, θ)

∂θ1

)2

= − T

σ2
v

+

(
1

σ2
v

T∑
t=1

(Yit − α−X∗′
it β)

)2

.

Therefore, we should have

E

[
s (Yi|Xi, θ0)

∂2f (Yi|Xi, θ0)/ ∂θ
2
1

f (Yi|Xi, θ0)

]

= E

( 1

σ2
v

T∑
t=1

Xit (Yit − α0 −X∗′
it β0)

)− T

σ2
v

+

(
1

σ2
v

T∑
t=1

(Yit − α0 −X∗′
it β0)

)2
 .
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This seems to indicate that, at least for linear models, the BP test has zero power

against fixed effects in the sense that it is unable to detect the presence of µ (Xi). It turns

out that the issue is a little subtle, and the BP test does have the power to detect µ (Xi)

as long as it is in the N−1/4-neighborhood, instead of the N−1/2-neighborhood. We note

that the components of [I1,−κ′
2I−1]KF measure the first order effect of misspecification

on the asymptotic mean of mN

(
θ̄N
)
. When [I1,−κ′

2I−1]KF is zero, we can make a more

refined analysis by going through the second order derivative, similar in spirit to Chesher

(1984)’s derivation. To be more specific, we zoom in on the following linear model

Yit = X∗′
it β0 +

µ (Xi) + ε∗i
N1/4

+ vit, t = 1, . . . , T, (B.12)

with vit ∼ N (0, σ2
v). Note that the fixed effects, especially µ (Xi), are in the O

(
N−1/4

)
neighborhood. Also note that

∂2f (Yi|Xi, θ)/ ∂θ
2
1

f (Yi|Xi, θ)
= − T

σ2
v

+

(
1

σ2
v

T∑
t=1

(Yit − α−X∗′
it β)

)2

,

so the counterpart of
√
NmN(θ̄N) is equal to

1√
N

N∑
i=1

(∑T
t=1 v̂it

)2
− T σ̂2

v

(σ̂2
v)

2 =
N−1/2v̂′[IN ⊗ (eT e

′
T − IT )]v̂

(σ̂2
v)

2 (B.13)

where v̂it denotes the OLS residual, eT is a T × 1 vector of ones, and σ̂2
v := (NT )−1∑N

i=1

∑T
t=1 v̂

2
it. We will assume that T−1E

[∑T
t=1X

∗
itX

∗′
it

]
is positive definite with finite

eigenvalues. We also assume that E [ε∗i vit] = 0 and E [ε∗iµ (Xi)] = 0.

In order to analyze the power of the BP test under the alternative (B.12), it suffices to

analyze the asymptotic mean of the numerator N−1/2v̂′[IN ⊗ (eT e
′
T − IT )]v̂ of (B.13). In

Lemma 19, we show how Honda (1985)’s Lemma 1 should be modified under the alternative

of fixed effects:

Lemma 19 Under (B.12), we have

v̂′[IN ⊗ (eT e
′
T − IT )]v̂

N1/2
=

1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

vilvim + T (T − 1)E
[
ξ2i
]
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− 2T (T − 1)λ′Q−1λ+
(
Q−1λ

)′
S
(
Q−1λ

)
+Op

(
N−1/4

)
,

where Q := T−1E
[∑T

t=1 X
∗
itX

∗′
it

]
, X̄∗

i := T−1
∑T

t=1X
∗
it, λ := E

[
X̄∗

i µ (Xi)
]
, ξi := µ (Xi) +

ε∗i and S := E
[∑T

l,m=1,l ̸=m X∗
ilX

∗′
im

]
.

Proof. In Appendix B.5.

In Lemma 19, we can clearly see that the presence of µ (Xi) affects the asymptotic bias

through λ and E [ξ2i ]. This is in contrast to the argument earlier in this section, where

the BP test was unable to detect µ (Xi) in the linear model. The difference is that in the

parameterization (23), µ (Xi) was too close to zero in the O
(
N−1/2

)
neighborhood for the

linear model, while we show here that µ (Xi) can be detected by the BP test if µ (Xi) is

not too close to zero. There already exists a well-known test (Hausman and Taylor, 1981)

for the linear model, which can be shown to have a power against the local misspecification

in the O
(
N−1/2

)
neighborhood. The test by Hausman and Taylor (1981) does not have a

counterpart in the nonlinear panel models, probably because the fixed effects estimator is

not asymptotically unbiased for fixed T for nonlinear models (even after bias reduction).

The BP test was shown to be able to detect fixed effects in nonlinear models, so it makes

sense to examine whether the BP test has such a property for linear models. Our analysis

in the current section leads to the practical conclusion that the BP test may be best suited

for nonlinear models.

B.5 Proof of Lemma 19

First, we can see that the OLS β̂ is not
√
N -consistent under the misspecification. In fact,

we have

β̂ =

(
N∑
i=1

T∑
t=1

X∗
itX

∗′
it

)−1( N∑
i=1

T∑
t=1

X∗
it

(
µ (Xi)

N1/4
+

ε∗i
N1/4

+X∗′
it β0 + vit

))

=

(
1

NT

N∑
i=1

T∑
t=1

X∗
itX

∗′
it

)−1(
1

N

N∑
i=1

X̄∗
i µ (Xi)

)
/N1/4

+

(
1

NT

N∑
i=1

T∑
t=1

X∗
itX

∗′
it

)−1(
1

N

N∑
i=1

X̄∗
i ε

∗
i

)
/N1/4
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+ β0 +

(
1

NT

N∑
i=1

T∑
t=1

X∗
itX

∗′
it

)−1(
1

NT

N∑
i=1

T∑
t=1

X∗
itvit

)
.

We see that for fixed T ,

1

NT

N∑
i=1

T∑
t=1

X∗
itX

∗′
it = Q+Op

(
N−1/2

)
,

1

N

N∑
i=1

X̄∗
i µ (Xi) = λ+Op

(
N−1/2

)
,

1

N

N∑
i=1

X̄∗
i ε

∗
i = Op

(
N−1/2

)
,

1

NT

N∑
i=1

T∑
t=1

X∗
itvit = Op

(
N−1/2

)
,

so

N1/4
(
β̂ − β0

)
= Q−1λ+Op

(
N−1/2

)
+Op

(
N−1/4

)
= Q−1λ+Op

(
N−1/4

)
. (B.14)

Now we consider

v̂′[IN ⊗ (eT e
′
T − IT )]v̂ =

N∑
i=1

T∑
l,m=1,l ̸=m

v̂ilv̂im.

Since the OLS residual v̂il = ξi/N
1/4 + vil −X∗′

il

(
β̂ − β0

)
with ξi = µ(Xi) + ε∗i , we have

1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

v̂ilv̂im =
1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

(
ξi

N1/4
+ vil

)(
ξi

N1/4
+ vim

)

− 1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

(
ξi

N1/4
+ vil

)
X∗′

im

(
β̂ − β0

)
− 1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

(
ξi

N1/4
+ vim

)
X∗′

il

(
β̂ − β0

)
+

1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

(
β̂ − β0

)′
X∗

ilX
∗′
im

(
β̂ − β0

)
. (B.15)

Note that the first term in (B.15) can be rewritten as

1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

(
ξi

N1/4
+ vil

)(
ξi

N1/4
+ vim

)
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=
1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

vilvim +
T (T − 1)

N

N∑
i=1

ξ2i +
2(T − 1)

N3/4

N∑
i=1

ξi

T∑
l=1

vil

=
1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

vilvim + T (T − 1)
(
E
[
ξ2i
]
+Op

(
N−1/2

))
+Op(N

−1/4)

=
1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

vilvim + T (T − 1)E
[
ξ2i
]
+Op(N

−1/4),

where we used the CLT for the second equality.

Now we show that the second term in (B.15) is Op(N
1/4).

1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

(
ξi

N1/4
+ vil

)
X∗′

im

(
β̂ − β0

)
=

1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

vilX
∗′
im

(
β̂ − β0

)
+

1

N3/4

N∑
i=1

T∑
l,m=1,l ̸=m

ξiX
∗′
im

(
β̂ − β0

)
=
(
β̂ − β0

)′( 1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

vilX
∗
im

)
+N1/4

(
β̂ − β0

)′(T − 1

N

N∑
i=1

ξi

T∑
m=1

X∗
im

)
.

Because E
[∑T

l,m=1,l ̸=m vilX
∗
im

]
= 0, we can apply the CLT and conclude that N−1/2

∑N
i=1∑T

l,m=1,l ̸=m vilX
∗
im = Op(1). Combined with the result that N1/4

(
β̂ − β0

)
= Q−1λ +

Op

(
N−1/4

)
, we conclude that the first term on the far right-hand side is Op

(
N−1/4

)
.

Noting that

T − 1

N

N∑
i=1

ξi

T∑
m=1

X∗
im = (T − 1)E

[
ξi

T∑
m=1

X∗
im

]
+Op

(
N−1/2

)
= (T − 1)E

[
(µ (Xi) + ε∗i )

(
TX̄∗

i

)]
+Op

(
N−1/2

)
= T (T − 1)E

[
X̄∗

i µ (Xi)
]
+Op

(
N−1/2

)
= T (T − 1)λ+Op

(
N−1/2

)
,

we conclude that the second term on the far right-hand side is

N1/4
(
β̂ − β0

)′(T − 1

N

N∑
i=1

ξi

T∑
m=1

X∗
im

)
= T (T − 1)λ′Q−1λ+Op

(
N−1/4

)
.

Combined with (B.14), we should have that the second term in (B.15) is equal to −T (T −

1)λ′Q−1λ+ Op

(
N−1/4

)
. By the same argument, the third term in (B.15) is also −T (T −

1)λ′Q−1λ+Op

(
N−1/4

)
as the indices l and m are symmetric in this respect.
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Finally, by (B.14), the fourth term in (B.15) can be written as

1

N1/2

N∑
i=1

T∑
l,m=1,l ̸=m

(
β̂ − β0

)′
X∗

ilX
∗′
im

(
β̂ − β0

)
= N1/4

(
β̂ − β0

)′( 1

N

N∑
i=1

T∑
l,m=1,l ̸=m

X∗
ilX

∗′
im

)
N1/4

(
β̂ − β0

)
=
(
Q−1λ

)′
S
(
Q−1λ

)
+Op

(
N−1/4

)
.

The result of the lemma follows by combining our analysis of each term of (B.15).

C Technical Details of Section 4

This section makes the following additional assumption.

Assumption 8 (i) supi,t E

[
∂2f(Yit|Xit,θ0)/∂θ21

f(Yit|Xit,θ0)

]
< ∞; (ii) supi,t E

[(
∂ ln f(Yit|Xit,θ0)

∂θ1

)2]
<

∞; (iii) there exists some function M (y, x) such that
∣∣∣∂4 ln f(Yit|Xit,θ)

∂θ21∂θ∂θ
′

∣∣∣ ≤ M (Yit, Xit),∣∣∣∂3 ln f(Yit|Xit,θ)
∂θ1∂θ∂θ′

∣∣∣ ≤ M (Yit, Xit),
∣∣∣∂2 ln f(Yit|Xit,θ)

∂θ1∂θ

∣∣∣2 ≤ M (Yit, Xit),
∣∣∣∂ ln f(Yit|Xit,θ)

∂θ1

∣∣∣2 ≤ M (Yit, Xit),

and supi,t E[M(Yit, Xit)] < ∞.

We first show that (12) is Op (1) as N, T → ∞. The same argument shows that (13) is

also Op (1). First, we rewrite (12) as

1√
NT

N∑
i=1

T∑
t=1

∂2f (Yit|Xit, θ0)/ ∂θ
2
1

f (Yit|Xit, θ0)
+

1√
NT

N∑
i=1

T∑
t,t′=1,t ̸=t′

∂ ln f (Yit|Xit, θ0)

∂θ1

∂ ln f (Yit′|Xit′ , θ0)

∂θ1
.

(C.1)

Note that the first term in (C.1) is a zero mean random variable, and conditional on the

Xs, it is a sum of random variables independent over i and t. Therefore, the first term in

(C.1) is Op

(
T−1/2

)
.

As for the second term in (C.1), we see that
∑T

t,t′=1,t ̸=t′
∂ ln f(Yit|Xit,θ0)

∂θ1

∂ ln f(Yit′ |Xit′ ,θ0)
∂θ1

has

mean equal to zero and its variance is equal to

T∑
t,t′=1,t ̸=t′

E

[(
∂ ln f (Yit|Xit, θ0)

∂θ1

)2
]
E

[(
∂ ln f (Yit′|Xit′ , θ0)

∂θ1

)2
]
,

71



and therefore, the second term in (C.1) has mean equal to zero and variance equal to

1

NT 2

N∑
i=1

T∑
t,t′=1,t̸=t′

E

[(
∂ ln f (Yit|Xit, θ0)

∂θ1

)2
]
E

[(
∂ ln f (Yit′ |Xit′ , θ0)

∂θ1

)2
]
= Op (1) .

In order to establish that the noise of estimating θ0 does not affect the distribution of

the test statistic under the null, we first apply the second order mean value theorem to

(24), and obtain

1√
NT

N∑
i=1

T∑
t=1

∂2 ln f
(
Yit|Xit, θ̄n

)
∂θ21

+
1√
NT

N∑
i=1

(
T∑
t=1

∂ ln f
(
Yit|Xit, θ̄n

)
∂θ1

)2

=
1√
NT

N∑
i=1

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1√
NT

N∑
i=1

(
T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2

+

 1
NT

√
T

∑N
i=1

∑T
t=1

∂3 ln f(Yit|Xit,θ0)

∂θ21∂θ
′

+ 2
NT

√
T

∑N
i=1

(∑T
t=1

∂ ln f(Yit|Xit,θ0)
∂θ1

)(∑T
t=1

∂2 ln f(Yit|Xit,θ0)
∂θ1∂θ′

)
√

NT
(
θ̄n − θ0

)

+
(√

NT
(
θ̄n − θ0

))′


1
2N

√
NT 2

∑N
i=1

∑T
t=1

∂4 ln f(Yit|Xit,θ̃)
∂θ21∂θ∂θ

′

+ 1
N
√
NT 2

∑N
i=1

(∑T
t=1

∂2 ln f(Yit|Xit,θ̃)
∂θ1∂θ

)(∑T
t=1

∂2 ln f(Yit|Xit,θ̃)
∂θ1∂θ′

)
+ 1

N
√
NT 2

∑N
i=1

(∑T
t=1

∂ ln f(Yit|Xit,θ̃)
∂θ1

)(∑T
t=1

∂3 ln f(Yit|Xit,θ̃)
∂θ1∂θ∂θ′

)

(√

NT
(
θ̄n − θ0

))

for some θ̃ between θ0 and θ̄n.

Note that the last term above can be bounded from above by 1
2N

√
NT 2

(∑N
i=1

∑T
t=1M (Yit, Xit)

)
+ 2

N
√
NT 2

∑N
i=1

(∑T
t=1 M (Yit, Xit)

)(∑T
t=1M (Yit, Xit)

)
∣∣∣√NT

(
θ̄n − θ0

)∣∣∣2
=

(
Op

(
NT

N
√
NT 2

)
+Op

(
NT 2

N
√
NT 2

))
Op (1) = op (1) ,

so we obtain that (24) can be rewritten as

1√
NT

N∑
i=1

T∑
t=1

∂2 ln f
(
Yit|Xit, θ̄n

)
∂θ21

+
1√
NT

N∑
i=1

(
T∑
t=1

∂ ln f
(
Yit|Xit, θ̄n

)
∂θ1

)2

=
1√
NT

N∑
i=1

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ21
+

1√
NT

N∑
i=1

(
T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)2
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+

 1
NT

√
T

∑N
i=1

∑T
t=1

∂3 ln f(Yit|Xit,θ0)

∂θ21∂θ
′

+ 2
NT

√
T

∑N
i=1

(∑T
t=1

∂ ln f(Yit|Xit,θ0)
∂θ1

)(∑T
t=1

∂2 ln f(Yit|Xit,θ0)
∂θ1∂θ′

)
√

NT
(
θ̄n − θ0

)
+ op (1) .

(C.2)

We now show that the third term in (C.2) is op (1). First, we have∣∣∣∣∣ 1

NT
√
T

N∑
i=1

(
T∑
t=1

∂3 ln f (Yit|Xit, θ0)

∂θ21∂θ
′

)∣∣∣∣∣ ≤ 1√
T

(
1

NT

N∑
i=1

T∑
t=1

M (Yit, Xit)

)
= op (1) .

Second, we have

2

N

N∑
i=1

(
1√
T

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)(
1

T

T∑
t=1

∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

)

=
2

N

N∑
i=1

(
1√
T

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)(
1

T

T∑
t=1

E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])

+
2

N

N∑
i=1

(
1√
T

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

)(
1

T

T∑
t=1

(
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

]))
,

which we further write as

2

N
√
T

N∑
i=1

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

(
1

T

T∑
t′=1

E

[
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′

])

+
2

NT
√
T

N∑
i=1

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])

+
2

NT
√
T

N∑
i=1

T∑
t,t′=1,t̸=t′

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′

])
.

(C.3)

The first term of (C.3) has mean zero and variance equal to

4

N2T

N∑
i=1

T∑
t=1

E

[(
∂ ln f (Yit|Xit, θ0)

∂θ1

)2
](

1

T

T∑
t′=1

E

[
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′

])2

≤ 4

N2T

N∑
i=1

T∑
t=1

E [M (Yit, Xit)]

(
1

T

T∑
t=1

E [M (Yit, Xit)]

)2

= O
(
N−1

)
,

so it should be op (1). As for the second term of (C.3), we have

E

∣∣∣∣∣ 2

NT
√
T

N∑
i=1

T∑
t=1

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])∣∣∣∣∣
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≤ 2√
T
sup
i,t

E

[∣∣∣∣∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])∣∣∣∣]

≤ 2√
T
sup
i,t

√√√√E

[∣∣∣∣∂ ln f (Yit|Xit, θ0)

∂θ1

∣∣∣∣2
]√√√√E

[∣∣∣∣(∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit|Xit, θ0)

∂θ1∂θ′

])∣∣∣∣2
]

= O
(
T−1/2

)
,

so it should be op (1). As for the third term of (C.3), we note that conditional on Xs, it can

be viewed as a sum of
∑T

t,t′=1,t ̸=t′
∂ ln f(Yit|Xit,θ0)

∂θ1

(
∂2 ln f(Yit′ |Xit′ ,θ0)

∂θ1∂θ′
− E

[
∂2 ln f(Yit′ |Xit′ ,θ0)

∂θ1∂θ′

])
,

which are independent over i. Therefore, it has mean zero and variance equal to

4

N2T 3

N∑
i=1

Var

(
T∑

t,t′=1,t ̸=t′

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′ |Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′

]))
.

By a similar reasoning, we can see that for t ̸= t′,

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′|Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′ |Xit′ , θ0)

∂θ1∂θ′

])
has mean equal to zero and the variance uniformly bounded over i and t. Therefore, we

can conclude that the variance of

T∑
t,t′=1,t ̸=t′

∂ ln f (Yit|Xit, θ0)

∂θ1

(
∂2 ln f (Yit′ |Xit′ , θ0)

∂θ1∂θ′
− E

[
∂2 ln f (Yit′ |Xit′ , θ0)

∂θ1∂θ′

])

is of order T 3.

This implies that the third term of (C.3) has mean zero and variance of order O (N−1),

so it should be op (1).
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