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Abstract

We examine econometric inferential issues with Hausman instruments. The instrumental variable

(IV) estimator based on Hausman instrument has a built-in correlation across observations, which may

render the textbook-style standard error invalid. We develop a standard error that is robust to these

problems. Clustered standard error is not always valid, but it can be a good pragmatic compromise to

deal with the interlinkage problem if Hausman instrument is to be used in econometric models in the

tradition of Berry, Levinsohn, and Pakes (1995). Additionally, we find that the Hausman IV is in fact

equivalent to the judge IV proposed by Kling (2006), which broadens the implication of our results

beyond the industrial organization literature.
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1 Introduction

Hausman instrument was first introduced by Hausman (Hausman, Leonard, and Zona, 1994; Hausman,

1996) as a way to address endogeneity of the (log of) price variable in linear demand equations. It was

later adopted in the context of nonlinear specifications, following the tradition of Berry, Levinsohn, and

Pakes (1995, BLP hereafter), for similar purposes (e.g., Nevo, 2001; Crawford and Yurukoglu, 2012). For

a comprehensive discussion and documentation of the Hausman IV in the broader context of Industrial
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Organization (IO) models, refer to Aguirregabiria (2019). The Hausman IV is also one of the most

popular instruments in quantitative marketing and financial market analyses (see, e.g., Crawford and

Yurukoglu, 2012; Rossi, 2014; Egan, Hortaçsu, and Matvos, 2017; Scanlon, 2019). Furthermore, as we

will demonstrate in Section 5 of the paper, the Hausman IV can be argued to be identical to the commonly

used judge IV,1 which has been extensively applied in empirical research, including studies on pretrial

supervision and incarceration (Di Tella and Schargrodsky, 2013; Aizer and Doyle, 2015), foster care (Gross

and Baron, 2022), and disability benefits (Dahl, Kostøl, and Mogstad, 2014; Autor, Kostøl, Mogstad, and

Setzler, 2019), among others.2

All the existing literature applying the Hausman IV focuses on empirical applications, with no the-

oretical discussion on the asymptotic framework and distribution necessary for econometric inference

using the Hausman IV. This paper addresses this gap by introducing various asymptotic frameworks to

examine inferential issues associated with the Hausman IV. We utilize a pseudo-panel structure to study

the Hausman IV in linear models, where n denotes the number of firms in a given market (market size),

and T represents the number of times the market is observed (number of markets).

Our first finding is that the Hausman IV estimator has a built-in correlation across contemporary

observations, which concurs with the endogeneity that requires an IV in the first place. This contem-

poraneous correlation induces a cluster-like dependence in the IV estimator, even when the error terms

in both the first-stage and second-stage equations are independent across observations. We demonstrate

that the textbook-style standard error formula is valid only under asymptotics where both n and T grow

to infinity. If either n or T is fixed, this formula becomes invalid. Additionally, we consider a rescaled

version of the textbook-style standard error and a clustered standard error, showing that the former is

valid under large n asymptotics, while the latter is valid under large T asymptotics. To overcome these

limitations, we develop a uniformly valid standard error that ensure correct asymptotic inference as long

as either n or T increases to infinity. This standard error is constructed as an average of the rescaled

textbook-style standard error and the clustered standard error.

Our asymptotic analysis is different from the typical results in the econometrics literature. It is

because the weak convergence concept, which is a standard tool for asymptotic analysis in econometrics,

was not adequate for our asymptotic analysis. We adopted the stable convergence concept, which is rarely

1There are different versions of the judge IV depending on how the covariates are handled. However, the leave-one-out

versions of the judge IV are all numerically identical to the Hausman IV in the pseudo-panel interpretation that we consider.
2For a summary of the applications of the judge IV in recent literature, see Table 1 in Frandsen, Lefgren, and Leslie

(2023).
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used in econometrics.3 In this sense, this paper makes a technical contribution as well.

Our results are based on the specification that the underlying model is linear, which superficially

rules out the BLP specification. Because our analysis of the failure of the textbook-style standard error

is based on the problems with the “numerator” of the standard error in linear models, and because the

same issue arises in the “ numerator” counterpart of the BLP, it is straightforward to conclude that the

textbook-style standard errors are invalid in the BLP specification when Hausman IV is adopted.

Regarding the practical implications for the BLP model with Hausman IV, we concede that this paper

does not extend the analysis of the uniformly consistent standard error, which was developed and justified

for the linear case. The BLP model involves numerous other components, making it challenging to isolate

and focus on the anomalies specifically related to the Hausman IV. While the large T asymptotic results

for linear models can be extended to the BLP model with Hausman IV in a straightforward manner—

essentially requiring only an adjustment of the “numerator”, we are uncertain if the same straightforward

extension applies to the large n asymptotic results.4 Since analyzing the uniformly consistent standard

error requires characterizing the asymptotic distributions under conditions where either n or T grows to

infinity, we are currently not in a position to establish a uniform inference method. Having said that,

we speculate that, in practice, it may be reasonable to use the clustered standard error. Although the

applied literature is not explicit on this point, it appears that large T asymptotics are implicitly adopted

in many cases.5

The remainder of this paper is organized as follows. In Section 2, we introduce the Hausman IV

estimator within a benchmark model and provide an intuitive overview of the main findings of this paper.

Section 3 derives the asymptotic distribution of the IV estimator in the benchmark model and discusses

the textbook-style standard error, clustered standard error, and provides the formula for a consistent

standard error. Section 4 extends these results to cases where exogenous regressors are included in the

structural equation. In Section 5, we demonstrate that the inference issues observed with the Hausman

3Phillips and Ouliaris (1990), Phillips and Sul (2003), Kuersteiner and Prucha (2013), Hahn, Kuersteiner, and Mazzocco

(2020), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) are some small number of exceptions.
4Some of the subtle issues include the following. As in the linear case, the clustered standard error is invalid under the

large n asymptotics as considered by Berry, Linton, and Pakes (2004). Having said that, the large n asymptotics is subject

to the concern along the line of Armstrong (2016), based on economics (not statistics) consideration. It is not clear to us

whether the same concern should be raised about the Hausman IV with large n asymptotics.
5For example, while Conlon and Gortmaker (2020) were not explicit about the asymptotics for standard error calculation,

it is clear that they adopted the large T asymptotics implicitly due to their reference (p.1123) to Freyberger (2015) for bias

correction and standard error adjustment since the latter considered the large T asymptotics.
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IV estimator also arise with other IV approaches, such as the judge IV and Bartik IV. Incidentally, we

find that the commonly used judge IV can be argued to be identical to the Hausman IV. Therefore, our

findings in the current paper have an implication that goes beyond the IO literature. Section 6 concludes

the paper. The Appendix contains proofs of the main theoretical results, and the Supplemental Appendix

provides auxiliary lemmas used in these proofs.

The following notation will be adopted throughout the paper. We use K to denote a generic strictly

positive constant that may vary from one instance to another but remains independent of the panel

dimensions n and T . We adopt the convention that a summation over an empty set equals zero. We

use a ≡ b to indicate that a is defined as b. For real numbers a1, . . . , am, (aj)j≤m ≡ (a1, . . . , am)>.

For any matrix A, A> denotes the transpose of A, and ‖A‖ denotes the Euclidean norm of A. For

any doubly indexed sequence ai,t (where i = 1, . . . , n and t = 1, . . . , T ), we define āi,· ≡ T−1
∑

t≤T ai,t,

ā·,t ≡ n−1
∑

i≤n ai,t and ā ≡ (nT )−1
∑

t≤T
∑

i≤n ai,t. The summation
∑

i′ 6=i is taken over all i′ except i,

which means
∑

i′ 6=i ai′,t =
∑i−1

i′=1 ai′,t +
∑n

i′=i+1 ai′,t.

2 Intuitive Overview of the Main Results

The class of models that the Hausman IV is applicable can be written in the linear simultaneous equations

model of the form

yi,t = αi + βxi,t + ui,t, (1)

xi,t = ηi + γct + vi,t, (2)

for i = 1, . . . , n and t = 1, . . . , T , where yi,t is some dependent variable (such as the quantity demanded),

xi,t is some endogenous explanatory variable (such as the price), and the ct can be understood to be the

latent common shock (such as cost shocks), the residual terms ui,t and vi,t may be correlated, which leads

to the endogeneity of xi,t.
6 The i denotes a city and the t denotes the time, so the (i, t)-pair indexes

the“market”as commonly understood in the IO literature. The model (1) - (2) can be viewed as a result

of the more general model, such as (14) presented in Section 4 below, where other included exogenous

variables are partialled out.

This linear model is also flexible enough to include the BLP as long as yi,t is understood to be some

nonlinear transformation that may depend on some additional parameters. For instance, Nevo (2001)’s

6Here, we abstract from the possibility of multiple goods, so in terms of commonly adopted notations, we let J = 1. Our

econometric analysis goes through even when J > 1 as long as it remains finite in the asymptotic framework.
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“full model” is similar to our “extended model” in (14) below with J > 1, where yi,t is the mean utility

from the good, xi,t is the price, wi,t is a vector of product characteristics, and β and θ are the means

of individual coefficients βi and θi (i = 1, . . . , n), which are assumed to follow a joint distribution up to

additional parameters θ2 (Nevo, 2001, eq. (3)). Given θ2, all the yi,t, xi,t and wi,t, the market share

can be calculated from the model by numerical integration, denoted as si,t(y, x, w
>θ2), so the “dependent

variable” yi,t can be obtained by solving the system of equations that matches the model-predicted market

share with the observed one from the data (Nevo, 2001, eq. (7)). The additional parameters as well as

the transformation complicates notations without shedding any further light on the basic econometric

problems, so we abstract away from the BLP-style complication.

Hausman (1996)’s insight is that under some conditions, the xi′,t with i′ 6= i, i.e., the contempo-

rary endogenous regressor from a different city, can serve as the instrument for xi,t.
7 Hausman IV can

be particularly useful because cost shocks, the preferred instruments for demand estimation, are often

unavailable to researchers. When n ≥ 2, a common practice is to use the average

zi,t ≡ (n− 1)−1
∑
i′ 6=i

xi′,t (3)

as the IV for xi,t,
8 which means that the IV estimator is numerically equal to

β̂iv ≡
∑

t≤T
∑

i≤n (zi,t − z̄i,·) (yi,t − ȳi,·)∑
t≤T

∑
i≤n (zi,t − z̄i,·) (xi,t − x̄i,·)

=

∑
t≤T

∑
i≤n zi,t (yi,t − ȳi,·)∑

t≤T
∑

i≤n zi,t (xi,t − x̄i,·)
, (4)

where we use the usual partialling out trick to eliminate the fixed effects. Since

yi,t − ȳi,· = (xi,t − x̄i,·)β + ui,t − ūi,· (5)

based on the expression for yi,t in (1), applying (5) to (4) gives:

β̂iv =

∑
t≤T

∑
i≤n zi,t ((xi,t − x̄i,·)β + ui,t − ūi,·)∑
t≤T

∑
i≤n zi,t (xi,t − x̄i,·)

= β +

∑
t≤T

∑
i≤n zi,t (ui,t − ūi,·)∑

t≤T
∑

i≤n zi,t (xi,t − x̄i,·)
.

It is straightforward to show that∑
t≤T

∑
i≤n

zi,t (ui,t − ūi,·) =
∑
i≤n

∑
t≤T

γui,t (ct − c̄) +
1

n− 1

∑
t≤T

∑
i≤n

∑
i′ 6=i

ui,tvi′,t −
T

n− 1

∑
i≤n

∑
i′ 6=i

ūi,·v̄i′,·, (6)

7In this paper, we will adopt all his identifying assumptions, and focus on the inferential issues. While Bresnahan and

Gordon (2008) have raised questions on the identifying assumptions in Hausman (1996)’s paper, which Nevo (2000) and

Aguirregabiria (2019) have also noted, this paper will focus on addressing the inferential issues rather than revisiting the

questions of identification.
8In the judge IV literature, zi,t is referred to as a leave-out mean or unbiased jackknife instrumental variable, see, e.g.,

Aizer and Doyle (2015); Autor, Kostøl, Mogstad, and Setzler (2019); Norris, Pecenco, and Weaver (2021).
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where c̄ ≡ T−1
∑

t≤T ct. Note that the second term on the right (underlined) is a sum over t of the U-

statistics
∑

i≤n
∑

i′ 6=i ui,tvi′,t. Elementary statistics suggests that the variance of such U-statistic would

depend on the covariance between u and v.9 The potential correlation between the u and v in the model

(1) and (2) is the source of endogeneity that would make the OLS inconsistent, and it is the reason why

the instrument is sought. Our contribution is to recognize that the U-statistic structure built-in as part

of the Hausman IV brings back the endogeneity (i.e., the covariance between u and v) as part of the

asymptotic variance.

Having described the intuition, we now summarize the basic theoretical results in the next section. In

Theorem 1, we provide the asymptotic distribution of the IV estimator β̂iv. We consider the asymptotic

framework where n and/or T can go to infinity, although we insist that at least one of them should go to

infinity by requiring that nT → ∞. It turns out that the asymptotic distribution of β̂iv depends on the

behavior of n and T in the limit. Theorem 1 is a general result that nests all possible limiting behaviors

of n and T . The asymptotic variance may be “random” depending on the limiting behaviors, and in

order to accommodate such situations, Theorem 1 presents the asymptotic distribution using the stable

convergence concept.

In Lemma 1, we consider the textbook-style standard error derived under the homoscedasticity and

independence assumption. The lemma establishes that this standard error is consistent only when both

n and T go to infinity; if n is fixed while T →∞, it ignores the covariance between u and v, and therefore

is inconsistent; if T is fixed while n→∞, it is again inconsistent because it ignores a multiplicative factor

that depends on the magnitude of T .

Recall that the concern about the covariance in the U-statistic arose in the decomposition (6) of the

“numerator” of β̂iv. The assumption that (ui,t, vi,t) are i.i.d. across i and t implies that the U-statistic∑
i≤n
∑

i′ 6=i ui,tvi′,t should be independent over t. This suggests that a standard error clustered at the

time level might be consistent. However, Lemma 2 demonstrates that such a clustered standard error is

consistent only when T → ∞; when T is fixed and n → ∞, it is inconsistent for a reason elaborated in

Section 3.2 below.

To address these issues, we develop a new standard error. In Theorem 2, it is shown that the new

standard error is consistent in general, and despite the relatively unusual stable convergence framework,

it enables asymptotically valid statistical inference, similar to what would be achieved under the usual

9For intuition, consider the simple case with n = 2, where the U-statistic takes the form u1,tv2,t + u2,tv1,t. Obviously

the variance of this quantity is equal to Var (u1,t) Var (v2,t) + 2 Cov (u1,t, v1,t) Cov (u2,t, v2,t) + Var (u2,t) Var (v1,t), assuming

that the u’s and the v’s have zero means, as well as that ui,t and vi′,t′ are independent for i 6= i′ or t 6= t′.
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weak convergence.

It is important to emphasize that Theorems 1 and 2, as well as Lemmas 1 and 2, are derived under the

assumption that (ui,t, vi,t) are i.i.d. across i and t. Therefore, the inconsistency of both the textbook-style

standard error and the clustered standard error is not attributable to any cluster structure among the

pairs (ui,t, vi,t) over i or t.

3 Main Results in the Benchmark Model

In this section, we study the asymptotic properties of the IV estimator β̂iv based on the model presented

in (1) - (2). We refer to this as the benchmark model because the structural equation (1) does not

include any exogenous regressors in equation (1). The IV estimator in an extended model, which includes

additional regressors in (1), will be investigated in the next section. Throughout this paper, we consider

an asymptotic framework where both n and T are indexed by m = 1, 2, . . . and both are non-decreasing

in m, with nmTm → ∞ as m → ∞. For simplicity, the dependence of nm and Tm on m is suppressed,

provided there is no risk of confusion.

Assumption 1 (i) (ui,t, vi,t) are i.i.d. across i and t with E [ui,t] = 0 and E [vi,t] = 0; (ii) ct1 is inde-

pendent of (ui,t2 , vi,t2) for any i, and any t1 and t2; (iii) E[u4
i,t] + E[v4

i,t] ≤ K and maxt E[c4
t ] ≤ K, (iv)

σ̂2
c ≡ T−1

∑T
t=1(ct − c̄)2 →p σ

2
c where σ2

c > 0 almost surely; (v) n ≥ 2, T ≥ 2 and (nT )−1 = o(1).

Assumption 1 includes some regularity conditions used for studying the IV estimators. Conditions

(i, ii) impose a dependence structure on the unobserved components, i.e., ui,t, vi,t, and ct, allowing for

correlation between ui,t and vi,t. For the common factor ct, we only require an upper bound on its

fourth moment and a lower bound on its “sample variance”. The factor ct may exhibit time-varying

distributions, making it non-stationary, and have a general dependence structure over time. Condition

(v) requires that both n and T are strictly greater than 1, and nT diverges with the sample size. The

restriction (nT )−1 = o(1) allows for cases such as: (i) large n and small T ; (ii) small n and large T ; and

(iii) large n and large T .

The independence assumption between the {ct} and {(ui,t, vi,t)} amounts to a homoscedasticity as-

sumption as well as no apparent cluster structure in the error vector {(ui,t, vi,t)}. We acknowledge that

in a typical empirical question where the Hausman IV is applicable, (ui,t, vi,t) often has a cluster struc-

ture over i or t, or both, but an important and interesting feature of our result is that the asymptotic

distribution of the Hausman IV estimator exhibits a clustering problem, introduced by the Hausman IV,
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even when there is no apparent cluster structure in the original model.

Theorem 1 Let F0 denote the sigma-field generated by {ct}T∞t=1. Under Assumption 1, we have

(nT )1/2(β̂iv − β) =
(nT )−1/2

∑T
t=1

∑n
i=1(γui,t(ct − c̄) + εi,t) +Op((nT )−1/2)

γ2σ̂2
c +Op((nT )−1/2)

, (7)

where εi,t ≡ (n− 1)−1
∑i−1

i′=1(ui,tvi′,t + ui′,tvi,t). Moreover, as m→∞,

(nT )1/2(β̂iv − β)→ ω∞Z (F0-stably), (8)

where ω2
∞ ≡ (γ2σ2

uσ
2
c +(n∞−1)−1(σ2

uσ
2
v +σ2

u,v))/(γ
4σ4
c ) is independent of Z ∼ N(0, 1), σ2

u and σ2
v denote

the variances of ui,t and vi,t, respectively, and σu,v denotes the covariance between them.10

Theorem 1 derives the asymptotic distribution of the IV estimator β̂iv. The stable limit in (8) is

required to address the case of large n and small T , where σ̂2
c does not converge to a non-random

constant; instead, its probability limit remains random in such a scenario. In the small n and large

T case, it is evident that the covariance σu,v, in addition to the variances σ2
u and σ2

v , appears in the

“asymptotic variance” ω2
∞. This arises from the cluster dependence of the Hausman IV zi,t − z̄i,· =

(n − 1)−1
∑

i′ 6=i
(
xi′,t − x̄i′,·

)
, which acts through εi,t, contributing to the U-statistic term in (6). Since

σu,v is the source of endogeneity, its appearance in ω2
∞ highlights the critical importance of accounting for

inherent cluster dependence when calculating the standard error for inference on the unknown parameter

β.

3.1 Textbook-style Standard Error

In this subsection, we examine the textbook-style standard error for β̂iv. It turns out that such a standard

error is consistent only when both n and T go to infinity, although a minor modification is consistent as

long as n→∞.

Specifically, the textbook-style standard error formula for IV estimators with conditionally homoskedas-

tic residuals is given by:

ŜE0(β̂iv) ≡

√√√√√√
(∑

t≤T
∑

i≤n (zi,t − z̄i,·)2
)(∑

t≤T
∑

i≤n û
2
i,t

)
nT
(∑

t≤T
∑

i≤n xi,t (zi,t − z̄i,·)
)2 ,

where ûi,t ≡ yi,t−ȳi,·−β̂iv(xi,t−x̄i,·). The following lemma presents the asymptotic properties of ŜE0(β̂iv).

10The definitions of G-stable convergence and G-mixing convergence can be found in Section A of the Appendix.
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Lemma 1 Under Assumption 1, we have:

√
nT ŜE0(β̂iv)→p

√
γ2σ2

uσ
2
c + (n∞ − 1)−1σ2

uσ
2
v

γ4σ4
c

(1− T−1
∞ ).

Lemma 1 shows that the textbook-style standard error is consistent only when both n and T go to

infinity. In this scenario the asymptotic variance of the IV estimator in Theorem 1 simplifies to σ2
u/(γ

2σ2
c ),

which is the same as the probability limit of ŜE0(β̂iv) after scaling.

In the large n and small T case, the textbook-style standard error is inconsistent due to the 1− T−1
∞

factor. However, we can apply a degrees of freedom adjustment to ŜE0(β̂iv), and show that the adjusted

standard error, i.e., ŜE0(β̂iv)(1− T−1)−1/2 is consistent in the large n scenarios.

In the small n and large T case, the covariance term σu,v in the “asymptotic variance” ω2
∞ is not

captured in the probability limit of ŜE0(β̂iv). This indicates that the textbook-style standard error and its

adjusted version are inconsistent as long as σu,v 6= 0. Since the endogeneity of xi,t arises from σu,v 6= 0, the

inconsistency of the textbook-style standard error is a by-product of the necessity of using IV estimation.

3.2 Clustered Standard Error

It is natural to conjecture that the cluster structure induced by the Hausman IV (σ2
u,v in Theorem 1)

might be intuitively handled by a clustered standard error, which has an additional bonus of providing

a protection against potential heteroscedasticity. We now investigate the asymptotic properties of the

conventional clustered standard error in this context. We show that the clustered standard error is

consistent when T →∞ but not when T is bounded from above.

Under Assumptions 1(i, ii), it is clear that: {ui,t(ct − c̄)}i≤n,t≤T are uncorrelated across i and across

t; and ui,t(ct − c̄) and εi′,t′ are uncorrelated for any i, i′ ≤ n and any t, t′ ≤ T . Therefore, the cluster

dependence in the estimation error of β̂iv is introduced through εi,t. Indeed, for any i1, i2 ≤ n, i′1 ≤ i1−1,

i′2 ≤ i′2 − 1 and any t, t′ ≤ T with t 6= t′, we have

E[ui1,tvi′1,tui2,t′vi′2,t′ ] = E[ui1,tvi′1,t]E[ui2,t′vi′2,t′ ] = 0,

which implies that

E
[
εi,tεi′,t′

]
= 0

as long as t 6= t′. Therefore, there is no clustering across t. On the other hand, we notice that

∑
t≤T

∑
i≤n

εi,t = (n− 1)−1
∑
t≤T

∑
i≤n

ui,t∑
i′ 6=i

vi′,t

 .
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For any t ≤ T and any i1, i2 ≤ n with i1 6= i2,

E

ui1,tui2,t ∑
i′1 6=i1

vi′1,t
∑
i′2 6=i2

vi′2,t

 = E [ui1,tui2,tvi2,tvi1,t] = E [ui1,tvi1,t]E [ui2,tvi2,t] = σ2
u,v,

which shows that εi,t has an equi-correlation across i, and it arises precisely due to the way the IV is

constructed. This motivates the following clustered standard error

ŜE1(β̂iv) ≡

√√√√√√
∑

t≤T

(∑
i≤n ûi,t (zi,t − z̄i,·)

)2

(∑
t≤T

∑
i≤n xi,t (zi,t − z̄i,·)

)2 .

We next present the asymptotic properties of the clustered standard error.

Lemma 2 Under Assumption 1, we have

ŜE1(β̂iv)
2 =

(nT )−1
∑

t≤T

(∑
i≤n γ(ct − c̄)ui,t − ξt

)2
+ (n− 1)−1(σ2

uσ
2
v + σ2

u,v)

(nT )γ4σ̂4
c

+Op((nT )−3/2), (9)

where ξt ≡ nγ(ct − c̄)(ū+ γ(ct − c̄)(β̂iv − β)). Moreover, if T →∞ as m→∞, then

(nT )ŜE1(β̂iv)
2 →p

γ2σ2
uσ

2
c + (n∞ − 1)−1(σ2

uσ
2
v + σ2

u,v)

γ4σ4
c

. (10)

Lemma 2 provides the asymptotic approximation of the clustered standard error. The component

denoted as ξt in (9) arises from estimating the unknown parameters αi and β in the structural equation

(1). When T approaches infinity, Lemma 2 shows that (nT )ŜE1(β̂iv)
2 is a consistent estimator of the

asymptotic variance of β̂iv. On the other hand, if T is bounded from above, the asymptotic approximation

in (9) indicates that ŜE1(β̂iv) is an inconsistent estimator.

To illustrate this inconsistency, consider the simplified case where ui,t is known, and as a result ξt

does not present in (9). In this case, the first term in the numerator of the faction on the right hand side

of (9), i.e.,

(nT )−1
∑
t≤T

∑
i≤n

γ(ct − c̄)ui,t

2

= γ2T−1
∑
t≤T

n−1/2
∑
i≤n

(ct − c̄)ui,t

2

,

fails to approach to γ2σ2
uσ

2
c in large sample, which causes the inconsistency of ŜE1(β̂iv).

The intuition underlying this failure is that the stable convergence of (n−1/2
∑

i≤n(ct − c̄)ui,t)t≤T ,

combined with the Cramér-Wold device and continuous mapping theorem, would imply that as m→∞,

γ2T−1
∑
t≤T

n−1/2
∑
i≤n

(ct − c̄)ui,t

2

→ γ2σ2
uσ

2
c

T−1
∑
t≤T

Z2
t

 (F0-stably),

10



where (Zt)t≤T is a vector of mutually independent standard normal random variables independent of σ2
c .

In other words, the term (nT )−1
∑

t≤T

(∑
i≤n γ(ct − c̄)ui,t

)2
converges to a scaled χ2 random variable

when T is small, not the desired non-stochastic component γ2σ2
uσ

2
c .

3.3 Averaging Textbook-style Standard Error and Clustered Standard Error

We now present a simple consistent standard error combining ŜE0(β̂iv) and ŜE1(β̂iv). From Lemma 1,

it is clear that (1 − T−1)−1/2ŜE0(β̂iv) is a consistent standard error as long as n → ∞. On the other

hand, Lemma 2 shows that ŜE1(β̂iv) is a consistent standard error whenever T →∞. This motivates the

following averaging standard error:

ŜEavg(β̂iv) ≡
n

T + n
(1− T−1)−1/2ŜE0(β̂iv) +

T

T + n
ŜE1(β̂iv). (11)

We show that the averaging standard error is consistent under the general asymptotic framework with

nT →∞ as m→∞.

Specifically, if both n and T go to infinity, then (nT )1/2(1 − T−1)−1/2ŜE0(β̂iv) and (nT )1/2ŜE1(β̂iv)

converge to the same limit ω∞, and so does (nT )1/2ŜEavg(β̂iv). When n is bounded from above, ŜEavg(β̂iv)

is dominated by the second term in (11), which as we have shown in (9) of Lemma 2, is a consistent

estimator of ω∞ after rescaled by (nT )1/2. Finally, if T is bounded from above, ŜEavg(β̂iv) is dominated

by the first term in (11), which is a consistent estimator of ω∞ after rescaled by (nT )1/2, as indicated by

Lemma 1.

As a consequence, we arrive at the following theorem, showing that statistical inference based on the

averaging standard error is valid when either n or T approaches infinity.

Theorem 2 Under Assumption 1, we have (nT )1/2ŜEavg(β̂iv)→p ω∞, and

β̂iv − β
ŜEavg(β̂iv)

→ N(0, 1) (F0-mixing) (12)

as m→∞.

Theorem 2 shows that asymptotically valid inference on β can be conducted using the stable limit

stated in (12). For instance, the usual (1− α)-confidence interval given by

CI1−α =
[
β̂iv − zα/2ŜEavg(β̂iv), β̂iv + zα/2ŜEavg(β̂iv)

]
(13)

covers β with probability approaching 1−α for any α ∈ (0, 1), where zα/2 denotes the (1−α/2)-quantile

of the standard normal distribution.
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4 Extended Model with Exogenous Regressors

The extended model incorporates several exogenous regressors, denoted as wi,t into the structural equa-

tion. Consequently, equation (1) becomes

yi,t = αi + xi,tβ + w>i,tθ + ui,t. (14)

The additional dw-dimensional regressors wi,t are allowed to be correlated with the common shock ct and

may exhibit both spatial and time series dependence. Ignoring these regressors could lead to omitted

variable bias and/or incorrect standard error for the IV estimator and the inference procedures discussed

in the previous section.11

To define the IV estimator in the extended model, we introduce the following notation. Let λ̂ ≡

Σ̂−1
w Γ̂w,x and define x̂i,t as x̂i,t ≡ xi,t − x̄i,· − (wi,t − w̄i,·)>λ̂, where

Σ̂w ≡ (nT )−1
∑
t≤T

∑
i≤n

(wi,t − w̄i,·)w>i,t and Γ̂w,x ≡ (nT )−1
∑
t≤T

∑
i≤n

(wi,t − w̄i,·)xi,t.

Similarly, define ŷi,t as ŷi,t ≡ yi,t− ȳi,·−(wi,t−w̄i,·)>π̂, where π̂ ≡ Σ̂−1
w Γ̂w,y and Γ̂w,y is defined analogously

to Γ̂w,x with xi,t replaced by yi,t. The IV estimator is then given by:

β̂e,iv ≡
∑

t≤T
∑

i≤n zi,tŷi,t∑
t≤T

∑
i≤n zi,tx̂i,t

. (15)

To study the properties of the IV estimator with additional regressors wi,t, the following assumption is

employed.

Assumption 2 (i) wi1,t1 is independent of (ui2,t2 , vi2,t2) for any i1 and i2, and any t1 and t2; (ii) there

exist a matrix Σw such that Σ̂w →p Σw, where the eigenvalues of Σw are bounded away from zero almost

surely; (iii) there exist a matrix Γw,c such that Γ̂w,c →p Γw,c, where Γ̂w,c is defined analogously to Γ̂w,x

with xi,t replaced by ct; (iv) maxi maxt E[||wi,t||4] ≤ K; (v) σ2
e,c ≡ σ2

c − Γ>w,cΣ
−1
w Γw,c > 0 almost surely.

Condition (i) in Assumption 2 ensures that the regressors wi,t are strictly exogenous, while condition

(iv) imposes a uniform upper bound on their fourth moment. Conditions (ii), (iii), and (iv) serve as

regularity conditions to ensure that the IV estimator β̂e,iv achieves a convergence rate of (nT )−1/2.

Assumption 2 permits both time series and spatial dependence in wi,t, and allows for correlation between

wi,t and the common shock ct. In this scenario, the probability limit of Γ̂w,c, i.e., Γw,c is a non-zero

matrix.
11This is particularly important for the Hausman IV because its identification condition is likely to fail unless the

advertising and promotional expenditure variables are included in the main regression (Rossi, 2014, p.666, footnote 8).
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Theorem 3 Let Fe,0 denote the sigma-field generated by {{ct}t≤T∞ , {wi,t}i≤n∞,t≤T∞}. Under Assump-

tions 1 and 2, we have as m→∞

(nT )1/2(β̂e,iv − β)→ ωe,∞Z (Fe,0-stably), (16)

where ω2
e,∞ ≡ (γ2σ2

uσ
2
e,c + (n∞ − 1)−1(σ2

uσ
2
v + σ2

u,v))/(γ
4σ4
e,c) is independent of Z ∼ N(0, 1).

We next present the formula for the average standard error, which is based on both the textbook-

style standard error and the clustered standard error, defined analogously to their counterparts in the

benchmark model. Similar to the benchmark model, neither the textbook-style standard error nor the

clustered standard error is consistent within the general asymptotic framework of nT →∞ employed in

this paper. However, these standard errors can be combined to construct a consistent averaging standard

error.

Denote the Hausman IV with αi and wi,t partialled out as:

ẑi,t ≡ (n− 1)−1
∑
i′ 6=i

(
xi′,t − x̄i′,·

)
− (wi,t − w̄i,·)>ϕ̂, (17)

where ϕ̂ ≡ Σ̂−1
w Γ̂w,z and Γ̂w,z ≡ (nT )−1

∑
t≤T

∑
i≤n(wi,t − w̄i,·)zi,t. The textbook-style standard error is

defined as

ŜEe,0(β̂e,iv) ≡

√√√√√√
(∑

t≤T
∑

i≤n ẑ
2
i,t

)(∑
t≤T

∑
i≤n û

2
e,i,t

)
nT
(∑

t≤T
∑

i≤n zi,tx̂i,t

)2 ,

where ûe,i,t ≡ ŷi,t − x̂i,tβ̂e,iv. Under Assumptions 1 and 2, we can show that

(nT )ŜEe,0(β̂e,iv)
2 →p

γ2σ2
uσ

2
e,c + (n∞ − 1)−1σ2

uσ
2
v

γ4σ4
e,c

(1− T−1
∞ ), (18)

which indicates that the textbook-style standard error does not account for the covariance term σu,v, and

therefore is inconsistent when n is bounded from above.12

Lemma 3 Under Assumptions 1 and 2, we have

√
nT ŜEe,0(β̂iv)→p

√
γ2σ2

uσ
2
c + (n∞ − 1)−1σ2

uσ
2
v

γ4σ4
c

(1− T−1
∞ ).

The clustered standard error in the extended model is defined as

ŜEe,1(β̂e,iv) ≡

√√√√√√
∑

t≤T

(∑
i≤n ẑi,tûe,i,t

)2

(∑
t≤T

∑
i≤n zi,tx̂i,t

)2 .

12See the proof of Lemma 3 in the Appendix for the derivation of (18).
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Similar to its counterpart in the benchmark model, the clustered standard error is consistent only when T

goes to infinity. Therefore, we can combine the textbook-style standard error and the clustering “robust”

standard error to obtain an averaging standard error defined as

ŜEe,avg(β̂e,iv) ≡
n

T + n
(1− T−1)−1/2ŜEe,0(β̂e,iv) +

T

T + n
ŜEe,1(β̂e,iv), (19)

which is consistent, as shown in the lemma below.

Lemma 4 Under Assumptions 1 and 2, we have (nT )1/2ŜEe,avg(β̂e,iv)→p ωe,∞.

By Theorem 3 and Lemmas 3 and 4, ŜEe,avg(β̂e,iv) can be used to construct confidence intervals, as

in (13), and to perform statistical inference for the unknown parameter β.

5 Potential Inferential Issues with Other Instruments

The inferential issue attributable to the U-statistic structure can arise in other contexts as well. For

example, the judge IV estimator may face similar challenges depending on its usage. As in equation (1)

of Kling (2006), we begin with a linear regression model: Yi = Siγ1 + εi, where Yi and Si respectively

denote the outcome and the sentencing variable for defendant i. In Kling (2006), the assignment of judge

Zj to case j is supposed to be random, with the instrument Zjπ reflecting the judge’s leniency. The

sentencing variable is given by a first-stage equation: Sj = Zjπ + Q>j θ + ηj , where Qj includes a set of

indicators for calendar quarter in each district office.

To understand the connection between the judge IV and the Hausman IV, we consider a pseudo-panel

representation of the model:

Yi,t = Si,tγ1 + w>i,tγ2 + ui,t, (20)

where Yi,t and Si,t denote the outcome and the treatment variable for defendant i handled by judge t,

wi,t denotes the vector of observable characteristics for individuals or cases. Compared to the structural

model in (14), equation (20) represents a potentially unbalanced pseudo-panel, as it allows for fixed effects

implicitly and permits varying numbers of cases across judges. These differences are superficial in terms

of the expression for the Hausman IV estimator β̂e,iv.

Since the fixed effects are potentially included in wi,t, there is no need to partial out αi explicitly like

for (14). We define the following matrices:

Σ̃w ≡
∑
t≤T

∑
i≤nt

wi,tw
>
i,t and Γ̃w,a ≡

∑
t≤T

∑
i≤nt

wi,tai,t, for a ∈ {u, z, S, Y },
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where nt denotes the number of cases handled by judge t. We then construct the Hausman IV estimator

as:

β̃e,iv =

∑
t≤T

∑
i≤nt

zi,tŶi,t∑
t≤T

∑
i≤nt

zi,tŜi,t
, (21)

where Ŝi,t ≡ Si,t − w>i,tΣ̃−1
w Γ̃w,S and Ŷi,t ≡ Yi,t − w>i,tΣ̃−1

w Γ̃w,Y , and zi,t is the IV for Si,t, which will be

discussed below. In the judge IV literature, it is common to use (zi,t, w
>
i,t) as the IVs for equation (20),

and then apply the two-stage least squares (2SLS) estimation to obtain the 2SLS estimators for γ1 and γ2.

Elementary algebra shows that β̃e,iv is equivalent to the 2SLS estimator of γ1. Therefore, the Hausman

IV estimator is indeed identical to the judge IV estimator.13

There are two common ways to construct the (judge) IV for Si,t in the literature, both involving

some form of leave-out mean. We focus on the leave-one-out mean, as it is the most straightforward and

closely related to the Hausman IV studied in earlier sections of this paper. The first approach is to use

the leave-one-out mean of the treatment Si,t:
14

zi,t = (nt − 1)−1
∑

i′ 6=i,i′≤nt

Si′,t, (22)

which is identical to the Hausman IV in (3), with adjustments for heterogeneous nt. Given the numerical

equivalence of β̃e,iv to the 2SLS estimator of γ1, the main results established in Section 4 apply to the

judge IV estimator when nt is homogeneous across t.

To see that the judge IV estimator β̃e,iv based on IV in (20), shares similar inferential issues as the

Hausman IV in general, we abstract Qt from the first-stage equation of Si,t for now, simplifying it as

Si,t = ct + vi,t in our pseudo-panel representation, where ct = Ztπ.15 Applying the expression for Yi,t in

(20) to the definition of β̃e,iv, we obtain:

β̃e,iv − γ1 =

∑
t≤T

∑
i≤nt

zi,tui,t − Γ̃>w,zΣ̃
−1
w Γ̃w,u∑

t≤T
∑

i≤nt
zi,tŜi,t

. (23)

In the numerator of the above equation, the first term is the source of the inferential issue with the judge

IV estimator. Using the definition of zi,t in (22) and the first-stage equation of Si,t, we can write:

∑
t≤T

∑
i≤nt

zi,tui,t =
∑
t≤T

∑
i≤nt

ctui,t +
∑
t≤T

∑
i≤nt

∑
i′ 6=i,i′≤nt

ui,tvi′,t
nt − 1

. (24)

13Given this equivalence, the main results established in Section 4 an be extended naturally to the judge IV estimator,

with appropriate adjustments for the varying cluster sizes nt across t.
14See, e.g., Di Tella and Schargrodsky (2013); Dahl, Kostøl, and Mogstad (2014); Aizer and Doyle (2015); Autor, Kostøl,

Mogstad, and Setzler (2019); Gross and Baron (2022).
15Justification of this simplification and the extension of this simplified form are provided later in this section.
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It is evident that the second term in this expression shares similar sum-of-U-statistic structure as the

second component in (6). Therefore, clustering becomes an issue for econometric inference if the “cluster

sizes” nt are small, as demonstrated in the lemma below.

Lemma 5 Suppose that ct has constant variance σ2
c and Assumptions 1(i, ii) hold. Then we have:

Var

∑
t≤T

∑
i≤nt

zi,tui,t

 = σ2
cσ

2
u

∑
t≤T

nt + (σ2
uσ

2
v + σ2

u,v)
∑
t≤T

nt
nt − 1

. (25)

Additionally,
(σ2
uσ

2
v + σ2

u,v)
∑

t≤T
nt
nt−1

σ2
cσ

2
u

∑
t≤T nt

≥ 1

σ2
c

σ2
v + σ2

u,v/σ
2
u∑

t≤T qt(nt − 1)
, (26)

where qt ≡ nt/
∑

t≤T nt.

Lemma 5 highlights the significance of cluster dependence introduced by the judge IV in the asymp-

totic variance of β̃e,iv. Specifically, the cluster dependence, captured by σu,v, is not asymptotically negli-

gible if the “average” cluster size
∑

t≤T qt(nt−1) is bounded from above. Moreover, under this condition,

the contribution of this cluster dependence to the asymptotic variance of β̃e,iv can be substantial if σ2
c is

relatively small. It is clear that Assumption 1(ii) maintained in Lemma 5 aligns with the judge’s random

assignment design, indicating that even with random assignment, cluster dependence introduced by the

judge IV must still be accounted for when conducting valid inference with a small “average” cluster size.

We now turn to the analysis of the judge IV estimator when the instrument is constructed as a

leave-out mean of the regression residuals Ŝi,t:
16

zi,t = (nt − 1)−1
∑

i′ 6=i,i′≤nt

Ŝi′,t. (27)

We consider a slightly more complicated first-stage: Si,t = ct + w>i,tθ + vi,t, where the IV in (27), by

partialling out the extra control variables, attempts to estimate the IV in (22) derived from the simplified

reduced form.17 The estimation error of the judge IV estimator retains the form presented in (23).

Therefore, in order to investigate its inferential issues, it suffices to study the first term in the numerator

of (23).

Using the definition of Ŝi,t and the expression for Si,t, we obtain:

zi,t = cet + (nt − 1)−1
∑

i′ 6=i,i′≤nt

vi,t − w̄>−i,t(θ̃ − θ∗),

16See, e.g., Dobbie, Goldin, and Yang (2018); Norris, Pecenco, and Weaver (2021); Frandsen, Lefgren, and Leslie (2023).
17Specifically, we can view the treatment variable in the simplified first-stage as Si,t − w>i,tθ, assuming that θ is known.

Since the judge IVs take the form of a leave-out mean, partialling out the extra control variables from Si,t is necessary only

when wi′,t is correlated with ui,t. This provides the justification for the IV in (22).
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where cet ≡ ct − w̄>−i,t(θ∗ − θ), w̄−i,t = (nt − 1)−1∑
i′ 6=i,i′≤nt

wi,t and θ∗ denotes the probability limit of

θ̃ ≡ Σ̃−1
w Γ̃w,S . This immediately implies that

∑
t≤T

∑
i≤nt

zi,tui,t =
∑
t≤T

∑
i≤nt

cetui,t +
∑
t≤T

∑
i≤nt

∑
i′ 6=i,i′≤nt

ui,tvi′,t
nt − 1

−
∑
t≤T

∑
i≤nt

ui,tw̄
>
−i,t(θ̃ − θ∗). (28)

Compared to (23), the expression in (28) contains an extra term
∑

t≤T
∑

i≤nt
ui,tw̄

>
−i,t(θ̃ − θ∗), which

arises from partialling out wi,t. However, this term is of smaller stochastic order than the other two terms

under certain regularity conditions, such as Assumptions 1(i, ii) and 2(i-iv). Therefore, the implications of

Lemma 5 also apply to the judge IV estimator β̃e,iv, when regression residuals are used to construct the IV:

even with random assignment, the cluster dependence, captured by σu,v, is not asymptotically negligible

when the “average” cluster size
∑

t≤T qt(nt− 1) is bounded from above, and it could be substantial if the

variance of cet is relatively small.

To conclude this section, we would like to emphasize that the U-statistic introduces a challenge due

to the unintended interlinkage among observations. This issue can also manifest in the context of Bartik

instruments. For example, as noted in Diamond (2016, equation (23)), the instrument is computed using

the average log wage in cities within a 25-mile radius of a given city, while excluding the log wage of the

city itself. This approach inherently creates an interlinkage problem. In contrast to the Hausman IV or

the judge IV estimators, where interlinkage is confined within a cluster, allowing for asymptotic analysis

as the number of clusters approaches infinity, the 25-mile radius circles may overlap. This overlapping

nature complicates the clustering from an asymptotic analysis perspective. We leave the exploration of

this complex issue as a topic for future research.

6 Conclusion

In this paper, we address econometric inferential issues related to Hausman instruments. The IV estimator

based on Hausman instruments has a “numerator” that involves U-statistics, naturally introducing a

clustering problem even when the errors are independent of each other. The clustering issue can be

important depending on the size of the clusters relative to the total sample size. We develop a standard

error that is robust to these problems. While clustered standard errors are not always valid, they can

serve as a pragmatic compromise for addressing the inter-linkage issue when using Hausman IV in BLP

or using the judge IV.
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Appendix

A Notations and Definitions

We begin by introducing some concepts related to the stable convergence of random variables from the

literature, see, e.g., Häusler and Luschgy (2015). Let (Ω,F ,P) be the underlying probability space, and

X be a Polish topological space equipped with its Borel sigma-field B(X ). For a sub-sigma-field G ⊂ F ,

and a (X ,B(X ))-valued random variable X, let PX and PX|G denote the marginal distribution of X and

the conditional distribution of X given G, respectively. Let Cb(X ) denote the space of all continuous,

bounded functions h : X 7−→ R equipped with the sup-norm ‖h‖∞ ≡ supx∈X |h(x)|.

Definition 1 Let G ⊂ F be a sub-sigma-field. A sequence (Xm)m≥1 of (X ,B(X ))-valued random vari-

ables is said to converge stably to an (X ,B(X ))-valued random variable X, denoted as

Xm → X (G-stably),

if PXm|G → PX|G weakly as m→∞. That is

lim
m→∞

E [gE [h(Xm)|G]] =

∫
g

∫
h(x)PX|G(·, dx)dP,

for every G-measurable function g with E [|g|] < ∞ and every h ∈ Cb(X ). In case that PX|G equals PX

almost surely, then (Xm)m≥1 is said to converge G-mixing to X, denoted as

Xm → X (G-mixing).

The limit PX|G in the G-stable convergence is a Markov kernel from (Ω,F) to (X ,B(X )) such that

PX|G(ω, ·) is a probability measure on B(X ) for every ω ∈ Ω, and PX|G(·, B) is F-measurable for every

B ∈ B(X ). For presenting the main results of this paper, we have X = R and PX|G = PηZ|G = N(0, η2)

for a G-measurable non-negative random variable η, and a standard normal random variable Z which is

independent of G, in the stable martingale central limit theorem.
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B Proofs of the Main Results

In this section, we provide the proofs of the main results, including Lemmas 1 and 2, and Theorems 1

and 2 from Section 3, as well as Theorem 3, and Lemmas 3 and 4 from Section 4. The auxiliary lemmas

used in these proofs are presented in the Supplemental Appendix (hereafter referred to as SA).

Proof of Theorem 1. The expression in (7) follows directly from (4) and Lemmas SA.2 and SA.3

in SA. By Lemma SA.4 in SA,

(nT )−1/2
∑
i≤n

∑
t≤T

(γui,t(ct − c̄) + εi,t)→ ω̃∞Z (F0-stably), (29)

which together with Assumption 1(iv) and (7) implies that

(nT )1/2(β̂iv − β) =
∑
i≤n

∑
t≤T

γui,t(ct − c̄) + εi,t

(nT )1/2γ2σ̂2
c

+Op((nT )−1/2). (30)

Since σ2
c is F0-measurable, by Assumption 1(iv) and (29), we can apply Theorem 3.18(b) in Häusler and

Luschgy (2015) to get:∑
i≤n

∑
t≤T

γui,t(ct − c̄) + εi,t

(nT )1/2
, γ2σ̂2

c

→ (
ω̃∞Z, γ

2σ2
c

)
(F0-stably). (31)

For any (x, y) ∈ R× R, let

g(x, y) ≡

 x/y, y > 0

0, y ≤ 0
.

Then g(x, y) is Borel-measurable and P(ω̃∞Z,γ2σ2
c)-continuous almost surely. Therefore by Theorem 3.18(c)

in Häusler and Luschgy (2015),

g

∑
i≤n

∑
t≤T

γui,t(ct − c̄) + εi,t

(nT )1/2
, γ2σ̂2

c

→ g(ω̃∞Z, γ
2σ2
c ) (F0-stably). (32)

The claim of the Theorem follows from (32) and the definition of g(x, y).

Proof of Lemma 1. By the definition of ŜE0(β̂iv), we can write

√
nT ŜE0(β̂iv) =

√√√√√√ (nT )−1
∑

t≤T
∑

i≤n

(∑
i′ 6=i

(
xi′,t − x̄i′,·

))2

(
(nT )−1

∑
t≤T

∑
i≤n
∑

i′ 6=i xi,t
(
xi′,t − x̄i′,·

))2 (nT )−1
∑
t≤T

∑
i≤n

û2
i,t.

The claim of the lemma follows from Assumption 1(iv), and Lemmas SA.2, SA.5 and SA.6 in SA.
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Proof of Lemma 2. We begin by expressing

(nT )(ŜE1(β̂iv))
2 =

(nT )−1
∑

t≤T

(∑
i≤n ûi,t (zi,t − z̄i,·)

)2

(
(nT )−1

∑
t≤T

∑
i≤n xi,t (zi,t − z̄i,·)

)2 . (33)

By Lemma SA.2 in SA, the denominator on the right-hand side of (33) satisfies:(nT )−1
∑
t≤T

∑
i≤n

xi,t (zi,t − z̄i,·)

2

= γ4σ̂4
c +Op((nT )−1/2). (34)

Using Lemmas SA.8 and SA.9 in SA, we approximate the numerator on the right-hand side of (33) as

(nT )−1
∑
t≤T

∑
i≤n

ûi,t (zi,t − z̄i,·)

2

= (nT )−1
∑
t≤T

∑
i≤n

γ(ct − c̄)ui,t − ξt

2

+
σ2
uσ

2
v + σ2

u,v

n− 1
+Op((nT )−1/2). (35)

By Lemmas SA.10 and SA.11 in SA, we have

(nT )−1
∑
t≤T

∑
i≤n

γ(ct − c̄)ui,t − ξt

2

= Op(1). (36)

The claim in (9) follows from Assumption 1(iv) and (33)-(36). In view of (9), to prove (10), it is sufficient

to show that as T →∞,

(nT )−1
∑
t≤T

∑
i≤n

γ(ct − c̄)ui,t − ξt

2

→p γ
2σ2
uσ

2
c . (37)

Applying Lemmas SA.10 and SA.11 in SA, and applying the Cauchy-Schwarz inequality, we get

(nT )−1
∑
t≤T

∑
i≤n

γ(ct − c̄)ui,t − ξt

2

= (nT )−1
∑
t≤T

∑
i≤n

γ(ct − c̄)ui,t

2

+ (nT )−1
∑
t≤T

ξ2
t

− 2γ(nT )−1
∑
t≤T

∑
i≤n

γ(ct − c̄)ui,tξt

= (nT )−1
∑
t≤T

∑
i≤n

γ(ct − c̄)ui,t

2

+Op(T
−1/2)

= γ2σ2
uσ̂

2
c + 2γ(nT )−1

∑
t≤T

∑
i≤n

(ct − c̄)2µi,t +Op(T
−1/2). (38)
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By Assumptions 1(i, ii, iii), we have

E

∣∣∣∣∣∣(nT )−1
∑
t≤T

∑
i≤n

(ct − c̄)2µi,t

∣∣∣∣∣∣
2 = (nT )−2

∑
t≤T

∑
i≤n

E[(ct − c̄)4]E[µ2
i,t] ≤ KT−1,

which, together with Markov’s inequality, implies that

(nT )−1
∑
t≤T

∑
i≤n

(ct − c̄)2µi,t = Op(T
−1/2). (39)

The desired result in (37) follows from Assumption 1(iv), along with (38), (39) and Slutsky’s Theorem.

Proof of Theorem 2. First consider the case where both n and T go to infinity. By Lemmas 1 and

2, we have

(nT )1/2(1− T−1)−1/2ŜE0(β̂iv) =
σu
γσc

+ op(1) and (nT )1/2ŜE1(β̂iv) =
σu
γσc

+ op(1),

which implies that

(nT )1/2ŜEavg(β̂iv) =
σu
γσc

+
n

T + n

(
(nT )1/2(1− T−1)−1/2ŜE0(β̂iv)−

σu
γσc

)
+

T

T + n

(
(nT )1/2ŜE1(β̂iv)−

σu
γσc

)
=

σu
γσc

+ op(1). (40)

Since ω∞ = σu/(γσc) in this case, from (40) we have (nT )1/2ŜEavg(β̂iv) →p ω∞. Second, consider the

case where n is bounded from above and T approaches infinity. In this scenario,

n

T + n
= o(1) and

T

T + n
= 1 + o(1). (41)

Moreover, Lemma 1 shows that

(nT )1/2(1− T−1)−1/2ŜE0(β̂iv) = Op(1),

which together with (10) of Lemma 2 and (41) implies that

(nT )1/2ŜEavg(β̂iv) =
T

T + n
(nT )1/2ŜE1(β̂iv) + op(1) = ω∞ + op(1).

To finish the proof of the first claim of the theorem, consider the last case where T is bounded from above

and n approaches infinity. In this scenario,

n

T + n
= 1 + o(1) and

T

T + n
= o(1). (42)
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Moreover, by Lemmas SA.10 and SA.11 in SA,

(nT )1/2ŜE1(β̂iv) = Op(1),

which together with Lemma 1 and (42) implies that

(nT )1/2ŜEavg(β̂iv) =
n

T + n
(nT )1/2(1− T−1)−1/2ŜE0(β̂iv) + op(1) = ω∞ + op(1).

In sum, we have shown that (nT )1/2ŜEavg(β̂iv) →p ω∞ in the asymptotic framework with nT → ∞. It

is evident that ω2
∞ is F0-measurable. Therefore by the first claim of the lemma, Lemma SA.4 in SA and

similar arguments in the proof of Theorem 1, we can show that

β̂iv − β
ŜEavg(β̂iv)

→ Z (F0-stably).

Since Z and F0 are independent, the convergence above is F0-mixing.

Proof of Theorem 3. By Assumptions 1(iv), and 2(ii, iii, v), and Lemmas SB.14 and SB.15 in SA,

we have

(nT )1/2(β̂e,iv − β) = (nT )−1/2
∑
i≤n

∑
t≤T

γ(ct − c̄− Γ̂>w,cΣ̂
−1
w (wi,t − w̄i,·))ui,t + εi,t

γ2(σ̂2
c − Γ̂>w,cΣ̂

−1
w Γ̂w,c)

+Op((nT )−1/2). (43)

Since σ2
e,c is Fe,0-measurable, by Assumptions 1(iv) and 2(ii, iii, v) and (43), we can apply Theorem

3.18(b) in Häusler and Luschgy (2015) to obtain: ∑
i≤n
∑

t≤T
γ(ct−c̄−Γ̂>w,cΣ̂−1

w (wi,t−w̄i,·))ui,t+εi,t
(nT )1/2

γ2(σ̂2
c − Γ̂>w,cΣ̂

−1
w Γ̂w,c)

→
 ω̃e,∞Z

γ2σ2
e,c

 (Fe,0-stably). (44)

The claim of the theorem follows from (44) and the same arguments used in the proof of (32).

Proof of Lemma 3. By Lemmas SB.13, SB.16 and SB.17 in SA, we have

(nT )ŜEe,0(β̂e,iv)
2 =

(
(nT )−1

∑
t≤T

∑
i≤n ẑ

2
i,t

)
×
(

(nT )−1
∑

t≤T
∑

i≤n û
2
e,i,t

)
(

(nT )−1
∑

t≤T
∑

i≤n x̂i,tzi,t

)2

=
γ2σ̂2

e,c + σ2
v(n− 1)−1 +Op((nT )−1/2)

(γ2σ̂2
e,c +Op((nT )−1/2))2

(σ2
u(1− T−1) +Op((nT )−1/2)),

which, together with Assumptions 1(iv) and 2(ii, iii, v), shows that

(nT )ŜEe,0(β̂e,iv)
2

1− T−1
→p

γ2σ2
e,c + σ2

v(n∞ − 1)−1

γ4σ4
e,c

σ2
u. (45)
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This implies the claim of the lemma.

Proof of Lemma 4. The proof follows from (45), Lemmas SB.13 and SB.24 in SA, and similar

arguments to those used in the proof of Theorem 2. Therefore, it is omitted.

Proof of Lemma 5. Under the maintained assumptions, we have:

Var

∑
t≤T

∑
i≤nt

zi,tui,t

 = Var

∑
t≤T

∑
i≤nt

ctui,t

+ Var

∑
t≤T

nt∑
i=2

i−1∑
i′=1

ui,tvi′,t + ui′,tvi,t
nt − 1


= σ2

cσ
2
u

∑
t≤T

nt + (σ2
uσ

2
v + σ2

u,v)
∑
t≤T

nt
nt − 1

,

which establishes the first claim of the lemma. Furthermore, since (x − 1)−1 is a convex function for

x ≥ 2, it follows that ∑
t≤T

nt
nt−1∑

t≤T nt
=
∑
t≤T

qt
nt − 1

≥ 1∑
t≤T qtnt − 1

.

This shows the second claim of the lemma.
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