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Abstract

We clear up an ambiguity in Gibbons, Ross and Shanken (1989, GRS here-

after) by providing the correct formula of the GRS test statistic for the mul-

tiple factor case and proving its exact F distribution, issues unaddressed in

GRS (1989). We theoretically and empirically illustrate the consequences of

using the incorrect formula that the ambiguity in GRS leads to – over-rejecting

and mis-ranking asset pricing models. We generalize the Sharpe ratio based

interpretation of the GRS test to the multiple portfolio case, and note that this

paradoxically makes experts in asset pricing studies more susceptible to the in-

correct formula. Finally, we also suggest a new approach to ranking competing

models, using the GRS statistic p-value.

Keywords: GRS test, asset pricing, CAPM, multivariate test, portfolio efficiency,

Sharpe ratio, over-rejection, model ranking

1 Introduction

In an influential paper, Gibbons, Ross and Shanken (1989, GRS hereafter) developed

and analyzed a test for the ex ante mean-variance efficiency of portfolios. For the
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single portfolio case, they carefully developed the test statistic in a linear regression

model, derived its finite-sample exact F distribution, investigated its power properties,

and highlighted its significance in asset pricing theory by purveying an alternative

interpretation involving the Sharpe ratio (Sharpe, 1966) – the excess return to a

portfolio per unit of risk (or volatility, measured by standard deviation) – which is

a key measure of portfolio efficiency. For the multiple portfolio case, however, GRS

(1989, Section 7) were ambiguous on how the test statistic should be constructed.

In terms of asset pricing theory, the solution to the portfolio optimization prob-

lem that yields the Sharpe ratio1 naturally requires the estimation of the variance-

covariance matrix of the portfolio excess returns. As for the statistics, the derivation

of the finite-sample exact distribution of the GRS statistic exploits a projection ma-

trix that, while resembling the variance-covariance matrix, is not. This equivocality in

the language of GRS (1989), the use of “variance-covariance matrix” has apparently

caused a confusion of the function of the GRS statistic, which is further exacerbated

by the fact that the F distribution wrongfully conjures up a degrees of freedom ad-

justment (d.f. hereafter) that is improper in this case. This has led to the application

of a very common incorrect formula that, paradoxically, is more likely to be used

by financial economists, the experts in the field, than by someone who focuses only

on the statistical aspect of the problem. We find that using the incorrect formula

leads to: (i) a test statistic that does not follow the F distribution as prescribed and

over-rejects the null hypothesis of portfolio efficiency; (ii) smaller models often being

favored over larger ones when the statistic is used to rank asset pricing models. This

error comes from mixing terms that fall out of portfolio optimization with a statistical

object that comes from the finite-sample exact test derivation.

Our purpose is to clear up the ambiguity in the statement of the GRS test and in

doing so, to highlight the error commonly made and its implications (both theoretical

and empirical) for applied work, as well as proposing a new methodology for the

ranking of competing asset pricing models. Section 2.1 investigates the statistical

aspect of the GRS test by deriving the correct GRS test statistic along with its

finite-sample exact distribution for the general multiple portfolio case, as well as

exploring the consequences of using the incorrect formula. Section 2.2 highlights the

interpretation of the GRS test using the Sharpe ratio and spells out the error often

made by financial specialists in the context of the portfolio optimization problem.

1Minimization of the volatility of a portfolio return subject to a portfolio mean return constraint,
to be detailed in Section 2.2.
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Section 3 provides some empirical examples related to the ranking of competing asset

pricing models. Section 4 concludes with some important final remarks. We will

adopt the notation in GRS (1989, Section 7) whenever possible.

2 Testing the Efficiency of Portfolios of Assets

The problem is to test the mean-variance efficiency of L portfolios, utilizing another

N assets (known as test assets). Let r̃jt denote the excess return on portfolio j in

period t, let r̃pt ≡ (r̃1t, . . . , r̃Lt)
′, and let r̃it denote the excess return on test asset i in

period t (j = 1, . . . , L, i = 1, . . . , N and t = 1, . . . , T ).

The mean-variance efficiency of the L portfolios has two implications that are in-

structive for coming up with tests of this efficiency. For the first implication, consider

the linear regression model (eq. (17) of GRS, 1989):

r̃it = δi0 + δ′ir̃pt + η̃it, ∀i = 1, . . . , N, (1)

where the L portfolios serve as factors and η̃it denotes the disturbance term. If the L

portfolios are efficient, then the intercepts in model (1) will be zero; that is

H0 : δi0 = 0, ∀i = 1, . . . , N. (2)

See for instance Sharpe (1964) and Litner (1965). A more interesting implication,

however, is that if the L portfolios are efficient, then the optimal portfolio consisting

of the L portfolios and the N test assets will have the same Sharpe ratio as that

consisting of the L portfolios only (GRS, 1989).

These two implications are well known in the literature. In the following two

subsections, we will elaborate on what they indicate for tests of portfolio efficiency

for the general multiple portfolio case. This side-by-side comparison helps shed light

on why the mistake is made so often.

2.1 GRS Test for Multiple Portfolios

To elaborate on the first implication, it helps to take a purely statistical approach

to the linear regression model (1) and the hypothesis (2), abstracting any economic

interpretation of them. We first provide the GRS test statistic for the general L ≥ 1

case along with its finite-sample exact distribution.
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Lemma 1 (Joint F test). Let r̃p ≡ [r̃p1, . . . , r̃pT ]′, r̄p ≡ T−1
∑T

t=1 r̃pt, and let δ̂0 be

the least squares estimator of δ0 ≡ (δ10, . . . , δN0)′; also let η̂t ≡ (η̂1t, . . . , η̂Nt)
′ with η̂it

being the least squares residuals of model (1). We follow GRS (1989) to assume that

the disturbance η̃t ≡ (η̃1t, . . . , η̃Nt)
′ has a joint normal distribution with mean zero and

nonsingular variance-covariance matrix Σ and is iid over t.2 Define

Ω̆ ≡ 1

T

T∑
t=1

r̃ptr̃
′
pt, (3)

Σ̂ ≡ 1

T − L− 1

T∑
t=1

η̂tη̂
′
t. (4)

Then the statistic defined as

W̃ ∗ ≡ T (T −N − L)

N(T − L− 1)

(
1− r̄′pΩ̆−1r̄p

)
δ̂′0Σ̂−1δ̂0 (5)

follows the FN,T−N−L distribution under the H0.

From a purely statistical point of view, Lemma 1 is all that one needs to test the

hypothesis (2), which is the usual joint F test of zero intercepts in a linear regression

model, and its proof is standard (in Online Appendix A). Note that in this case, only

Σ, the variance-covariance matrix of the disturbances η̃it, needs to be estimated (by

Σ̂ in eq. (4)). It is also obvious in the proof (eq. (A.3) and (A.5) in Online Appendix

A) that Ω̆ naturally arises in the projection of r̃it onto the column space of r̃p, the

design matrix of model (1). The following theorem, however, gives the generalized

GRS test statistic that is equivalent to W̃ ∗ in Lemma 1, generalizes the original GRS

test when L = 1, and is easier to interpret from the portfolio optimization point of

view (eq. (11) below and the discussion that follows).

Theorem 1 (Generalized GRS test). Suppose all the conditions of Lemma 1 are

satisfied. Define

Ω̃ ≡ 1

T

T∑
t=1

(r̃pt − r̄p) (r̃pt − r̄p)′ =
1

T

T∑
t=1

r̃ptr̃
′
pt − r̄pr̄′p (6)

2We acknowledge that it is difficult to take seriously the assumption of normality of returns –
returns are bounded below by -100% due to limited liability in financial markets for publicly traded
assets and returns are known to be heteroskedastic and dependent over time. Here we adopt the
GRS (1989) setting for comparison purposes.
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and the generalized GRS test statistic

W̃ ≡ T (T −N − L)

N(T − L− 1)

(
1 + r̄′pΩ̃

−1r̄p

)−1

δ̂′0Σ̂−1δ̂0. (7)

Then W̃ = W̃ ∗, and hence W̃ follows the FN,T−N−L distribution under the H0.

Remark 1 (Original GRS test when L = 1). When L = 1, Ω̃ equals to 1
T

∑T
t=1 r̃

2
pt −

r̄2
p = s2

p, the sample variance of r̃pt without d.f. defined by GRS (1989, p.1124).

It then immediately follows that W̃ in eq. (7) is the same as the original GRS test

statistic when L = 1 (GRS, 1989, p.1124).

Although Ω̃ in eq. (6) is reminiscent of the maximum likelihood estimator (MLE

hereafter) of the variance-covariance matrix Ω of the L portfolio excess returns r̃pt,

it is a conceptually different object. The use of the Sherman-Morrison formula in

the proof of Theorem 1 (in Online Appendix A) shows that Ω̃ is simply a result of

rewriting Ω̆ (which in turn naturally arises in the projection of r̃it onto the column

space of r̃p), instead of an estimator of Ω, so d.f. is not an admissible notion here.3

For the L > 1 case, GRS (1989, p.1146) gave a test statistic and its finite-sample

exact F distribution under the H0:

Ŵ ≡ T (T −N − L)

N(T − L− 1)

(
1 + r̄′pΩ̂

−1r̄p

)−1

δ̂′0Σ̂−1δ̂0 ∼ FN,T−N−L, (8)

where they prescribed Ω̂ to be the sample variance-covariance matrix of r̃pt.
4 Since

the sample variance-covariance matrix customarily entails d.f., i.e.,

Ω̂ ≡ 1

T − 1

T∑
t=1

(r̃pt − r̄p) (r̃pt − r̄p)′ =
T

T − 1
Ω̃, (9)

the statistic Ŵ suggested by GRS (1989) differs from our W̃ , and Theorem 1 therefore

immediately implies that Ŵ does not follow the FN,T−N−L distribution as prescribed.

Although GRS (1989) were careful to point out that Ω̃ (without d.f.) should be

used for the L = 1 case and Shanken (1986) clearly stated the same for the L > 1

case in a separate paper, their ambiguity and choice of words for the L > 1 case

in GRS (1989) made readers particularly susceptible to incorrectly using Ω̂ (with

3The equivalence between W̃ ∗ and W̃ is obvious for the L = 1 case, but requires the Sherman-
Morrison formula to show for the L > 1 case.

4And everything else in eq. (8) is as defined in Lemma 1.
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d.f.) instead, which leads to a test statistic Ŵ that does not follow the prescribed

FN,T−N−L distribution. For example, popular packages in R and Stata use Ω̂ when

computing the GRS test statistic.

We discover two major consequences of using the incorrect GRS test statistic

in empirical asset pricing studies. First, the incorrect GRS test statistic Ŵ over-

rejects the null hypothesis of portfolio efficiency when gauged against the FN,T−N−L

distribution. Our simulation experiments (detailed in Online Appendix B and results

reported in Table B.1) show that the over-rejection can be large if the number of

test assets (N) is large even when the sample period (T ) is long – we see substantial

over-rejection of the null hypothesis with 25 test assets and five factors for T = 400

calibrated to typical monthly data. The following remark provides the justification

for our empirical findings.

Remark 2 (Over-rejection). Take the ratio between Ŵ in eq. (8) and W̃ in eq. (7),

then by the relationship between Ω̂ and Ω̃ in eq. (9) we get the ratio

Ŵ

W̃
=

1 + r̄′pΩ̃
−1r̄p

1 + T−1
T
r̄′pΩ̃

−1r̄p
, (10)

which measures how much the incorrect formula inflates the GRS test statistic. Define

a function g(x) = 1+x
1+T−1

T
x
. Since the first order derivative of this function is g′(x) =

1/T

(1+T−1
T

x)
2 > 0, we know that g(x) is a monotonically increasing function of x. This,

combined with the facts that g(0) = 1 and r̄′pΩ̃
−1r̄p ≥ 0, implies that Ŵ/W̃ ≥ 1.

As a result, when Ŵ is gauged against the FN,T−N−L, the distribution of W̃ , it will

over-reject the null hypothesis.

In addition, the significance of the GRS test statistic in recent financial studies, as

Fama and French (2015) advocate, resides in the ranking of competing asset pricing

models rather than testing them, since, as Fama and French (2015) remark, all models

are merely approximations of the asset pricing mechanism and will be rejected by a

sufficiently powerful test given enough data. Models with smaller GRS test statistics

are favored as they are regarded as fitting the data better. Using the data borrowed

from Fama and French (2015, 2016), we show that the incorrect GRS test statistic

Ŵ can easily flip the ranking between the single factor CAPM and four/five-factor

Fama-French models (detailed in Section 3 and results reported in Table 1). The next

remark provides some intuition for our empirical findings.
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Remark 3 (Model ranking). Some back-of-the-envelop calculation suggests that r̄′pΩ̃
−1r̄p

tends to be larger for models with more factors. To see this, let µr̃p denote the mean

vector of r̃pt, then by the central limit theorem, we have
√
T (r̄p − µr̃p)

d.−→ N (0,Ω);

and by the law of large numbers, we have Ω̃
p.−→ Ω. These two results imply that

T (r̄p − µr̃p)′Ω̃−1(r̄p − µr̃p)
d.−→ χ2

L. Note that E(χ2
L) = L, so this in turn implies that

for fixed T , the mean of r̄′pΩ̃
−1r̄p is approximately E(r̄′pΩ̃

−1r̄p) ≈ L
T

+ 2E(r̄′pΩ
−1µr̃p)−

µ′r̃pΩ−1µr̃p = L
T

+ µ′r̃pΩ−1µr̃p, where µ′r̃pΩ−1µr̃p is expected to increase with L since

the dimensions of both µr̃p and Ω increase with L. As a result, the random variable

r̄′pΩ̃
−1r̄p tends to increase with L on average.5 Combined with Remark 2, this means

that the ratio in eq. (10) tends to be larger for larger models; that is, smaller models

tend to be disproportionally favored if the incorrect GRS test statistic Ŵ is used to

rank models, compared to the ranking based on the correct GRS statistic W̃ .

Remark 4 (Model ranking using p-value). Beyond this sensitivity of model ranking

to the d.f. calculation, we note that the use of the raw GRS statistic is subject to a

familiar critique akin to that of the use of R2 for model selection. In this context, we

suggest using the p-value of the statistic W̃ from the F distribution.

2.2 Interpretation of the GRS Test Using the Sharpe Ratio

To elaborate on the second implication, that if the L portfolios are efficient then

the optimal portfolio consisting of the L portfolios and the N test assets will have

the same Sharpe ratio as that consisting of the L portfolios only, we first consider a

general portfolio optimization problem that yields the Sharpe ratio. Let r̃ denote a

vector of excess returns of K assets (K ≥ 1), and let µr̃ and Ωr̃ be their ex ante mean

vector and variance-covariance matrix, respectively. Let m be the target mean excess

return and ω be a vector of K asset weights. The optimal portfolio weights ω∗ solve

min
ω
ω′Ωr̃ω, subject to ω′µr̃ = m.

Recall that the Sharpe ratio captures the mean excess return to a portfolio per unit

of volatility (standard deviation), so the squared Sharpe ratio of the optimal portfolio

5We need to point out that the argument here is based on an approximation, as E(r̄′pΩ̃−1r̄p) is

a non-linear function of r̄p and Ω̃. Moreover, r̄′pΩ̃−1r̄p may deviate from its mean for a particular
sample. Therefore, it is entirely possible that the incorrect formula of the GRS test favors larger
models in some cases.
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composed of these K assets is

θ∗2 ≡
(

m√
ω∗′Ωr̃ω∗

)2

= µ′r̃Ω
−1
r̃ µr̃,

in which the variance-covariance matrix Ωr̃ of the K assets plays a central role.

Applying this general result separately to the Sharpe Ratio of the L portfolios

and the N test assets, and to the Sharpe ratio of the L portfolios alone (detailed

in Online Appendix C), we get the following W , involving the squared Sharpe ratio

θ∗2N+L of both the L portfolios and the N test assets and the squared Sharpe ratio θ∗2p
of the L portfolios only,

W ≡


√

1 + θ∗2N+L√
1 + θ∗2p

2

− 1 =
(

1 + µ′r̃pΩ−1µr̃p

)−1

δ′0Σ−1δ0. (11)

Under the null hypothesis of portfolio efficiency, W is zero, which generalizes eq. (7)

in GRS (1989) to the L > 1 case.

Note that in the derivation of eq. (11) (in Online Appendix C), both Ω and Σ are

understood to be variance-covariance matrices (of the portfolio excess returns r̃pt and

of the disturbance term η̃t, respectively). Based on eq. (11), tests for the portfolio

efficiency can be constructed as an ex post (sample) analog of W , by replacing each

of its components with its estimator. It is natural to replace µr̃p with r̄p, and δ0

with δ̂0. When it comes to the variance-covariance matrices Ω and Σ, however, two

simple estimators are equally commonly used – the unbiased estimators (Ω̂ and Σ̂)

and the MLE (Ω̃ and Σ̃).6 As far as the optimal portfolio theory is concerned, any

combination of them, including both W̃ and Ŵ , suffices to test whether the two

Sharpe ratios are the same (i.e., whether W = 0), provided that the correct finite-

sample exact distribution is used.7 The tricky part is that since both Ω and Σ are

interpreted as variance-covariance matrices in the optimal portfolio theory, the exact

FN,T−N−L distribution strongly conjures up a d.f. adjustment for both of them, which

results in Ŵ that does not follow the FN,T−N−L distribution, while in fact only the

combination of Ω̃ (without d.f.) and Σ̂ (with d.f.) leads to W̃ , which follows the

convenient FN,T−N−L distribution. This perhaps explains why financial economists,

6Σ̃ is not formally defined in this paper.
7Without using the Sherman-Morrison formula, the correspondence between W̃ ∗ and W , on the

other hand, is not straightforward.
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the experts in the field, are more likely to use the incorrect statistic Ŵ than someone

who focuses on the statistical problem rather than the portfolio optimization problem.

3 Empirical Results

We now turn to some empirical examples, borrowing from Fama and French (2015,

2016). The models they report the GRS statistic for include the CAPM, the Fama-

French three-factor model, several variations of a four-factor model, and their five-

factor model. The test assets they explore include five-by-five sortings based on

market capitalization and various anomaly variables including operating profitability,

return volatility, residual volatility, accruals and so on. We use data retrieved from

the French data library, and we consider five year periods (Table 1 Panel A) and

twenty year periods (Table 1 Panel B) drawn from the time period 1963-2019.8.

Our results can be found in Table 1. What we find is that the rankings of the

models are sensitive to miscalculation of the GRS statistic. Consider the case of

the test assets comprised of the 25 accruals-ME (market capitalization) portfolios

and a five year estimation horizon. The simple CAPM is misranked above a five-

factor model if we use the incorrectly calculated GRS statistic, in spite of an average

absolute alpha that is twice as high as for the five-factor model. Similarly, if we

look at the five-by-five sorting by CAPM beta and market capitalization, the simple

CAPM model and a four-factor model flip rankings when the incorrectly calculated

GRS statistic is employed. If we expand the set of test assets (results available on

request), we see that very few models maintain their correct rankings if we use the

incorrectly calculated GRS statistic.

It is not difficult to find cases using a fifteen or twenty year window for which

rankings of models flip. It is also common to find a model with a large average

absolute alpha incorrectly ranked above another with a much smaller alpha. See, for

instance, the cases of five-by-five sorting by market capitalization and momentum

(UMD), five-by-five sorting by market capitalization and operating profit (OP), five-

by-five sorting by market capitalization and total return variance, two-by-four-by-four

sorting by market capitalization, book-to-market (BEME) and operating profits, in

all of which the CAPM is ranked incorrectly as superior to a four- or five-factor model.

The important insight to take away from these results is that the error in calcu-

lating the GRS statistic can have a material impact on empirical results, in particular

8We thank Ken French for making this valuable resource freely available.
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Table 1: Ranking Between Small And Large Models

Test Assets |Average| Correct GRS Incorrect GRS
Small Model Annualized Alpha

Large Model |δ̂0| W̃ Rank Ŵ Rank

Panel A:

5x5 Accruals × ME
Mkt 3.02 0.8148 2 0.8150 1
Mkt SMB HML RMW CMA 1.44 0.8144 1 0.8174 2

5x5 Beta × ME
Mkt 3.73 2.4026 2 2.4026 1
Mkt SMB HML RMW 3.46 2.3951 1 2.4038 2

Panel B:

5x5 ME × UMD
Mkt 3.99 2.1984 2 2.2078 1
Mkt SMB HML RMW CMA 3.36 2.1816 1 2.2293 2

5x5 ME × OP
Mkt 1.74 2.5132 2 2.5242 1
Mkt SMB HML RMW CMA 1.34 2.4907 1 2.5456 2

5x5 Variance × ME
Mkt 4.96 4.5547 2 4.5744 1
Mkt SMB HML CMA 2.72 4.5483 1 4.6284 2

2x4x4 ME × MEBE × OP
Mkt 4.70 2.8994 2 2.8996 1
Mkt SMB HML CMA 2.79 2.8993 1 2.9005 2

Notes: (1) In all cases, the incorrect GRS statistic inflates the large model more to flip the ranks.
(2) For Panel A the sample periods cover January 2002 to December 2006 and January 2007 to
December 2011, respectively.
(3) For Panel B the sample periods are 20 year windows selected from 1963 to 2019.
(4) For detailed description of the factor and test asset construction see Fama and French (2015,
2016).
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when twenty or fewer years of data are used, which is not uncommon in empirical

asset pricing studies. For example, Barillas and Shanken (2018) do not use the GRS

but do model comparisons on a little less than fifteen years of monthly data. Sha

and Gao (2019) use 144 months of data and exploit six metrics to evaluation factor

model performance, including the GRS statistic. Baek and Bilson (2015) consider

234 months of data in a subsample estimation. Chiah, Chai, Zhong and Li (2016) use

23 years of data when comparing models using the GRS. One takeaway from these

papers is that many situations involving specialized data (like Sha and Gao 2019 and

their exploration of mutual fund returns in China) or sub-sample robustness checks

(like Baek and Bilson 2015) necessarily are constrained to shorter samples than fifty

or even twenty years, so that the bias from an incorrectly calculated GRS statistic

becomes large.

We do not, however, recommend ranking of models with the magnitude of the

GRS statistic, and instead suggest the use of the p-value of the statistic from the

exact F-distribution, since the p-value internalizes the different degrees of freedom of

the GRS statistics computed for models with different number of factors.

4 Concluding Remarks

The GRS test statistic, as a sample analog of the solution to a portfolio optimization

problem and used in a finite-sample F test, should from the perspective of a financial

economist involve Ω̂, the d.f. adjusted estimator of the variance-covariance matrix Ω

of the portfolio excess returns. As a consequence, an applied researcher in finance is

more likely to use the statistic Ŵ which incorrectly implements a d.f. adjustment.

Certainly in practice this appears to be the case.

Paradoxically, this error is clearly visible when turning a blind eye to the economic

interpretation of the GRS test and taking a purely statistical approach. Even though

Ω̃ is numerically the same as the usual MLE (without d.f.) of Ω, Ω̃ naturally arises

in the projection onto the column space of r̃p, the design matrix of model (1), not

as an estimator of the variance-covariance matrix Ω. Hence a d.f. adjustment should

not be applied.

Finally, if T is large enough such that the difference between Ŵ and W̃ becomes

negligible, then the χ2
N distribution is adequate if all that is required is a joint test on

the intercepts.9 The FN,T−N−L distribution is, however, inherently pertinent to exact

9Both of the properly re-scaled test statistics NŴ and NW̃ have a limit χ2
N distribution as
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tests where one should make a point of computing the degrees of freedom correctly.

Further, among all the potential constructions of the GRS test statistic, W̃ is the

only form with a known small-sample distribution, and the p-value of the F test is

suited to the purposes of ranking models. For this reason we recommend the exact

F test construction with its attendant FN,T−N−L distribution, for both testing and

ranking of asset pricing models.
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A Proofs

To prove Theorem 1 in the paper, we use the following lemmas.

Lemma 2. If a random vector Y and a random matrix W satisfy: (i) Y ∼ Nd(µ,Σ),
the d dimensional normal distribution; (ii) W ∼ Wd(f,Σ), the d × d dimensional
Wishart distribution; and (iii) Y ⊥ W . Then given the Hotelling’s T-squared defined
as T 2 ≡ f(Y − µ)′W−1(Y − µ), we have F ≡ f−d+1

fd
T 2 ∼ Fd,f−d−1.

Lemma 3 (Sherman-Morrison formula). Suppose A is an invertible L×L matrix and

u and v are L×1 vectors. If A+uv′ is invertible, then (A+ uv′)−1 = A−1− A−1uv′A−1

1+v′A−1u
.

Lemma 2 is a standard result in multivariate statistics (see, e.g., Anderson, 2003,
Theorem 5.2.2), and Lemma 3 is a standard result in linear algebra (see, e.g., Bartlett,
1951, pp. 107).

Proof of Lemma 1. The proof proceeds in three steps.

Step 1. In this step, we will show that under the null hypothesis (2),√
T (1− r̄′pΩ̆−1r̄p)δ̂0 ∼ NN(0,Σ), (A.1)

where Ω̆ is defined in eq. (3).
Let `T denote a T × 1 vector with every element being one, and let IT denote the

T × T identity matrix. Define Pp,T = r̃p
(
r̃′pr̃p

)−1
r̃′p as the T × T projection matrix

(onto the column space of r̃p) and its T×T complement matrix Qp,T = IT−Pp,T . It is a
standard result (e.g., Hayashi, 2000, pp. 18-19) that the OLS estimator of δi0 satisfies

δ̂i0 − δi0 = (`′TQp,T `T )−1 `′TQp,T η̃i, where η̃i ≡ (η̃i1, . . . , η̃iT )′ for ∀i = 1, . . . , N . Since
η̃it has normal distribution, and let σ2

ii denote the (i, i) entry of Σ, then it is a standard

10Schulich School of Business, York University, mkamstra@yorku.ca.
11Department of Economics, University of California Riverside, ruoyao.shi@ucr.edu.
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result (e.g., Hayashi, 2000, Section 1.3) that
√
`′TQp,T `T

(
δ̂i0 − δi0

)
∼ N1(0, σ2

ii). It

then only takes some algebra to show that√
`′TQp,T `T

(
δ̂0 − δ0

)
∼ NN(0,Σ). (A.2)

Now let’s take a closer look at `′TQp,T `T :

`′TQp,T `T = `′T `T − `′T r̃p
(
r̃′pr̃p

)−1
r̃′p`T

= T −

(
T∑
t=1

r̃′pt

)(
T∑
t=1

r̃ptr̃
′
pt

)−1( T∑
t=1

r̃pt

)

= T − T

(
1

T

T∑
t=1

r̃′pt

)(
1

T

T∑
t=1

r̃ptr̃
′
pt

)−1(
1

T

T∑
t=1

r̃pt

)
= T (1− r̄′pΩ̆−1r̄p). (A.3)

Recall that δ0 = 0 under the null hypothesis (2), so eq. (A.2) and (A.3) together
imply (A.1), the claim of Step 1.

Step 2. In this step, we will show that δ̂0 ⊥ Σ̂ and

(T − L− 1)Σ̂ ∼ WN(T − L− 1,Σ). (A.4)

Let X = [`T , r̃p] denote the T × (L + 1) design matrix of eq. (1). Define the

T × T projection matrix P = X (X ′X)−1X ′ and its complement Q = IT − P . Let
η̃ = [η̃1, . . . , η̃N ] denote the T × N matrix of all disturbances in eq. (1). Then by
the standard results of the OLS estimators with normal disturbances (e.g. Hayashi,

2000, Section 1.3), we have δ̂0 ⊥ Σ̂ and (T −L−1)Σ̂ =
∑T

t=1 η̂tη̂
′
t = η̃′Qη̃ = η̃′UDU ′η̃,

where the last equality holds by the singular value decomposition of Q, in which
U is a T × T unitary matrix, and D is a T × T diagonal matrix with T − L − 1
diagonal entries being ones and the rest being zeros. Since we assume that the rows
of η̃ are mutually independent and follow NN(0,Σ) distribution, the rows of U ′η̃ are
also mutually independent and follow NN(0,Σ) distribution. This further implies

that η̃′UDU ′η̃ has the same distribution as such sum S =
∑T−L−1

j=1 ξjξ
′
j, where ξj are

mutually independent and ξj ∼ NN(0,Σ) (j = 1, . . . , T − L − 1). By construction,
the distribution of S is the Wishart distribution WN(T − L− 1,Σ). This proves the
claim of Step 2.

Step 3. In this step, we apply Lemma 2 to the results of Steps 1 and 2. After

some simple algebra, we get W̃ ∗ ∼ FN,T−N−L with W̃ ∗ defined in eq. (5). This
completes the proof of Lemma 1.

Proof of Theorem 1. Based on Lemma 1, we only need to show that W̃ ∗ defined in
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eq. (5) equals W̃ in eq. (7). By comparing eq. (6) and (3), we see that Ω̃ = Ω̆− r̄pr̄′p,
so it suffices to show that

1− r̄′pΩ̆−1r̄p =
(

1 + r̄′pΩ̃
−1r̄p

)−1

=

[
1 + r̄′p

(
Ω̆− r̄pr̄′p

)−1

r̄p

]−1

. (A.5)

Applying Lemma 3 with A = Ω̆, u = r̄p and v = −r̄p, we get
(

Ω̆− r̄pr̄′p
)−1

=

Ω̆−1+
Ω̆−1r̄pr̄′pΩ̆−1

1−r̄′pΩ̆−1r̄p
, which implies that 1+r̄′p

(
Ω̆− r̄pr̄′p

)−1

r̄p = 1+r̄pΩ̆
−1r̄p+

(r̄′pΩ̆−1r̄p)
2

1−r̄′pΩ̆−1r̄p
=(

1− r̄′pΩ̆−1r̄p

)−1

, which further immediately implies eq. (A.5). This completes the

proof of Theorem 1.

B Simulation Results

Following the literature, we generate portfolio excess returns r̃pt as normal, indepen-
dent and identically distributed, calibrated to monthly U.S. stock returns. The excess
return for test asset i and time t is generated based on model (1), which is rewritten
here:

r̃it = δi0 +
L∑

j=1

δij r̃jt + η̃it, (B.1)

where η̃it ∼ iid normal across t with mean 0 and volatility σii, and r̃jt ∼ iid normal
across t with mean (µj/L), volatility σj and E [η̃itr̃jt] = 0. We set µj = 0.01, σj =
0.02, σii = 0.08, δij = 1, ∀ i, j and we explore only the case of δi0 = 0, ∀ i.

We explore size properties of the correct and incorrect formulas of the GRS statis-
tic for numbers of portfolios (L) from 1 to 5, test assets (N) from 1 to 25, and sample
sizes (T) from 36 (months) to 400. This spans typical applications of the GRS test.
Our simulations show that the performance of the incorrect GRS formula generally
suffers deterioration as the number of firms and factors increases, as one might expect.
We present a subset of simulation results in Table B.1, where the over-rejection due
to the degree of freedom adjustment for the sample variance-covariance matrix of the
portfolio excess returns is displayed.

The correct formula of the GRS test generally presents no evidence of incorrect
size, as our simulation setting is one in which it should have correct finite-sample exact
size. The incorrect formula of the GRS test shows over-rejection even at 400 months
for (N,L) = (5, 4) and at 36 months months the over-rejection can be somewhat
large, for instance rejecting 10.6% of the time at the 10% level for (N,L) = (5, 4).

Bootstrap simulations using non-normal data, available on request, show a smaller
deviation of the correct and incorrect GRS test size performance.
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Table B.1: Null Rejection Rates

Test Assets Portfolios Periods Ŵ (Incorrect GRS) W̃ (Correct GRS)
(N) (L) (T ) 1% 5% 10% 1% 5% 10%

1 3 36 0.0107 0.0519 0.1027 0.0101 0.0500 0.1000
60 0.0104 0.0509 0.1016 0.0100 0.0498 0.0999
100 0.0103 0.0509 0.1011 0.0100 0.0502 0.1001
400 0.0100 0.0501 0.1001 0.0100 0.0499 0.0998

5 4 36 0.0111 0.0540 0.1064 0.0101 0.0502 0.1002
60 0.0107 0.0524 0.1040 0.0100 0.0499 0.1000
100 0.0104 0.0515 0.1024 0.0100 0.0500 0.1001
400 0.0100 0.0504 0.1007 0.0099 0.0500 0.1000

25 5 36 0.0106 0.0527 0.1050 0.0100 0.0499 0.0999
60 0.0109 0.0538 0.1064 0.0100 0.0500 0.1001
100 0.0108 0.0529 0.1046 0.0101 0.0502 0.1000
400 0.0102 0.0508 0.1012 0.0099 0.0500 0.0999

Notes: (1) Bold-faced numbers are rejection rates larger than the nominal values.
(2) The results are based on 5,000,000 simulations.

(3) The models are: r̃it = δi0+
∑L

j=1 δij r̃jt+η̃it, where r̃jt ∼ iidN
(
µj/L, σ

2
j

)
, η̃it ∼ iidN

(
0, σ2

ii

)
and E [η̃itr̃jt] = 0. For ∀j, µj = 0.01, σj = 0.02, σii = 0.08, and δij = 1.

C Derivation of Eq. (11)

The optimal portfolio weights ω∗ solve

min
ω
ω′Ωr̃ω, subject to ω′µr̃ = m.

The first order conditions for this problems are ω∗ = ϕΩ−1
r̃ µr̃ and ϕ = m/(µ′r̃Ω

−1
r̃ µr̃),

where ϕ is the Lagrange multiplier. Recall that the Sharpe ratio captures the mean
excess return to a portfolio per unit of volatility (standard deviation), so the squared
Sharpe ratio of the optimal portfolio composed of these K assets is

θ∗2 ≡
(

m√
ω∗′Ωr̃ω∗

)2

= µ′r̃Ω
−1
r̃ µr̃,

in which the variance-covariance matrix Ωr̃ plays a central role.
Applying this general result, we know that when the constituent assets are the L

portfolios, the squared Sharpe ratio is

θ∗2p = µ′r̃pΩ−1µr̃p . (C.1)

When the constituent assets include both the N test assets and the L portfolios, the
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squared Sharpe ratio is θ∗2N+L = µ′r̃N+L
Ω−1

r̃N+L
µr̃N+L

, where µr̃N+L
≡
(
µ′r̃N , µ

′
r̃p

)′
,

Ωr̃N+L
≡

[
δΩδ′ + Σ δΩ

Ωδ′ Ω

]
, (C.2)

and δ ≡ [δ1, . . . , δN ]′ with δi being the slope coefficient in model (1). Eq. (C.2) holds
because we can rewrite the variance-covariance matrix of the N test assets and their
covariance matrix with the L portfolios using Ω, Σ and δ (in the same way as V̂ on
p.1143 and eq. (24) in GRS, 1989). Applying the inverse formula for a block matrix
and noticing the relationship between µr̃N and µr̃p implied by model (1), we get

θ∗2N+L = θ∗2p + δ′0Σ−1δ0, (C.3)

which is essentially the same as eq. (22) and (23) in MacKinlay (1995). This, together
with eq. (C.1) and simple algebra, further implies eq. (11).

D Software Packages

SAS and R packages to implement our generalized GRS test can be found at the au-
thors’ websites: http://markkamstra.com/data.html (SAS) and https://ruoyaoshi.github.io/
(R). A Stata package grsftest coded by Mengnan (Cliff) Zhu can be found at
https://ideas.repec.org/c/boc/bocode/s458828.html.
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