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Introduction

Motivation

Structural DDC models can be very useful:

Inter-temporal preference of forward-looking agents.
Counterfactual analysis.
Examples: labor force participation, demand for durable goods, etc.

Estimation:

Full solution estimators (MLE).
CCP-based estimators (simulated GMM, pseudo-MLE).
Finite dependence (GMM).

All require estimation of state transition distribution as input, some
even need simulation (HMSS, 1994) or iteration (Aguirregabiria &
Mira, 2002), to evaluate the objective function.

Practical motivation: a novel & simple estimator of flow utility
parameters that completely bypasses state transition.
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Introduction

Preview of Results

We articulate a Markovian property for observed state variables
under coomon assumptions in DDC literature.

It eliminates the need of dealing with the state transitions.

Represent the optimal decision rule as a simple linear system under
mild additional assumptions.

Identification conditions for flow utility parameters can be easily
discussed.

Develop a CCP-based semiparametric estimator that is much simpler
and faster than alternatives (≈ 1000 times faster than HMSS in MC).
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Introduction

Relation to Literature

Estimation: Rust (1987, NFP), Hotz & Miller (1993), Hotz, Miller,
Sanders & Smith (1994, HMSS), Aguirregabiria & Mira (2002, NPL),
Pesendorfer & Schmidt-Dengler (2008, GMM), Aguirregabiria &
Magesan (2013, Euler), Arcidiacono & Miller (2019, FDP),
Kalouptsidi, Scott & Souza-Rodrigues (2021), Chiong, Galichon &
Shum (2016, duality), Srisuma & Linton (2012, FIE), Buchholz,
Shum & Xu (2021, FIE); Adusumilli & Eckardt (2019).
Identification: Rust (1987, 1994), Magnac & Thesmar (2002), Hotz
& Miller (1993), Arcidiacono & Miller (2011), Bajari, Chu, Nekipelov
& Park (2016), Arcidiacono & Miller (2020), Abbring & Daljord
(2020).
Counterfactual: Aguirregabiria (2010), Arcidiacono & Miller (2020),
Kalouptsidi et al. (2021); unobserved heterogeneity: Kasahara &
Shimotsu (2009), Arcidiacono & Miller (2011), Hu & Shum (2012),
Higgins & Jochmans (2023); partial identification: Norets & Tang
(2014), Berry & Compiani (2023), Kalouptsidi, Kitamura et al.
(2024).Chou, Ridder and Shi (2025) Nonstationary Dynamic Discrete Choice UC Berkeley 5/1/2025 4/ 19



Model Setup & Markovian Property Model Setup

Nonstationary Dynamic Binary Choice Model

Decision horizon: T ≡ {Tstart , . . . ,Tend}.
In each period t ∈ T , flow utility is u(at , st ; δt) + εat t , where

at ∈ {0, 1}: a binary choice;
st : observed state variables;
εt ≡ (ε1t , ε0t)

′ utility shocks; let Ωt = (s ′t , ε
′
t)
′.

Each agent chooses at to maximize expected lifetime payoff:

E

Tend−t∑
j=0

βj(u(at+j , xt+j ; δt+j) + εat+j t+j)

∣∣∣∣st , εt , at
 .

Model primitives:

flow utility parameters: δt for all t ∈ T ;
state transition distributions: ft+1(st+1, εt+1|st , εt , at);
shock distributions: Ft(εt).

Nonstationarity: δt or ft time-varying; Tend finite.
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Model Setup & Markovian Property Model Setup

We Maintain These Common Assumptions

Assumption 1 (Controlled Markov process)

Assume (st+1, εt+1) ⊥⊥ (st−j , εt−j , at−j) | (st , εt , at) for j ∈ N+.

Assumption 2 (Flow utility shocks)

Assume (i) εt ⊥⊥ st ; (ii) εt ⊥⊥ st−1; (iii) εt ⊥⊥ εt′ for t 6= t ′; (iv) ε0t ⊥⊥ ε1t .

Assumption 3 (Conditional independence)

Assume st+1 ⊥⊥ εt | (st , at).

A subset of AM (2010) assumptions; sufficient for Markovian below.
Common “conditional independence” assumption in literature:

f (st+1, εt+1|st , εt , at) = f (εt+1|st+1, st , εt , at) · f (st+1|st , εt , at)
= f (εt+1) · f (st+1|st , at)
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Model Setup & Markovian Property Model Setup

Some Standard Preliminary Results (HM 1993, AM 2011)

Conditional choice probability (CCP):

pt(s) ≡ Pr .(at = 1|st = s) =

∫
aot (st , εt)dFt(εt).

Choice-specific conditional value function vat(st) and integrated value
function V̄t(·) have the relation (a ∈ {0, 1}):

vat(st) ≡ ut(a, st) + βE(V̄t+1(st+1)|st , at = a).

For each a ∈ {0, 1}, there exists a function ψa of CCP only, whose
functional form is known given Ft(εt), such that

ψa(pt) = V̄t(st)− vat(st);

intuitively, it adjusts for the fact that choice a might not be optimal.
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Model Setup & Markovian Property Model Setup

Some Standard Preliminary Results (cont’d)

Our approach starts with an implication of these results:

ψ0(pt)−ψ1(pt) = u(1, st ; δt)− u(0, st ; δt)︸ ︷︷ ︸
static logit

+ β∆E
(
V̄t+1(st+1) | st

)︸ ︷︷ ︸
main difficulty in dynamic models

.

where ∆E(hτ |st) ≡ E(hτ |st , at = 1)− E(hτ |st , at = 0) for τ > t.

Repeatedly plug in the Bellman’s equation (Uo
t is optimal flow utility):

V̄t(st) = Uo
t (st) + βE(V̄t+1(st+1)|st).

Stop in some period T ∗ ≤ Tend , we get

ψ0(pt)− ψ1(pt) = u(1, xt ; δt)− u(0, xt ; δt)

+
T∗−1∑
τ=t+1

βτ−t∆E(E(· · ·E(Uo
τ (sτ )|sτ−1) · · · |st+1)|st)

+ βT
∗−t∆E(E(· · ·E(E(V̄T∗(sT∗)|sT∗−1)|sT∗−2) · · · |st+1|st). (1)
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Model Setup & Markovian Property Markovian Property

Markovian Property

Theorem 1 (Markovian st)

Under Assumptions 1 & 2(i)-(iii), st is a first order Markov process; that
is, st+1 ⊥⊥ st−j | st for j ∈ N+.

Proof only uses elementary probability theory. proof

Not implied by Assumption 1 alone, or vice versa. assumptions

This is the key to our approach, not exploited in literature.

Lemma 2 (Conditional independence)

Under Assumptions 1 & 2(i)-(iii), for j ∈ N+ and measurable function g(·),

E(E(g(st+j) | st+1) | st , at) = E(g(st+j) | st , at).
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Model Setup & Markovian Property Markovian Property

Markovian Property (cont’d)

Theorem 2 (Telescoping)

Under Assumptions 1-3, eq. (1) simplifies to

ψ0(pt)− ψ1(pt) = u(1, xt ; δt)− u(0, xt ; δt)

+
T∗−1∑
τ=t+1

βτ−t∆E(�E(· · ·�E(�E(Uo
τ (sτ ) |���sτ−1) |���sτ−2) · · · |���st+1) | st)

+ βT
∗−t∆E(�E(· · ·�E(�E(V̄T∗(sT∗) |���sT∗−1) |���sT∗−2) · · · |���st+1) | st)

= u(1, xt ; δt)− u(0, xt ; δt)

+
T∗−1∑
τ=t+1

βτ−t∆E(Uo
τ (sτ ) | st) + βT

∗−t∆E(V̄T∗(sT∗) | st). (2)
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Identification & Estimation Estimation

Mild Common Assumptions

Assumption 4 (Logit)

ε0t and ε1t both follow a type I extreme value distribution.

Implies: ψ0(pt)− ψ1(pt) = ln(pt/(1− pt)).

Assumption 5 (Linear flow utility)

For each t ∈ T , suppose u(0, xt ; δt) = x ′tδ0,t and u(1, xt ; δt) = x ′tδ1,t for
some δ0,t and δ1,t . We normalize δ0,1 = cdx×1.

Weaker than what’s common in DDC literature.

st = (x ′t , z
′
t)
′, where zt (can be empty) is “excluded variables”.

Implies:

Uo
t (st) = ptx

′
tδ1,t + (1− pt)x

′
tδ0,t + γ − pt ln(pt)− (1− pt) ln(1− pt).
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Identification & Estimation Estimation

Mild Common Assumptions (cont’d)

Under Assumptions 1-5, eq. (2) becomes a partially linear system:

yT∗−1 = x ′T∗−1∆T∗−1 + β∆E(V̄T∗(xT∗ , zT∗)|sT∗−1), and (3a)

yt = x ′t∆t +
T∗−1∑
τ=t+1

βτ−t∆x̄τ ′t δ0,τ +
T∗−1∑
τ=t+1

βτ−t∆x̄τ ′1,t∆τ

+ βT
∗−t∆E(V̄T∗(sT∗)|st), for t = 1, . . . ,T − 2, (3b)

where

We let ∆t ≡ δ1,t − δ0,t .
∆x̄τ1,t ≡ ∆E(pτxτ |xt , zt) and ∆x̄τt ≡ ∆E(xτ |xt , zt);

yT−1 ≡ ln
(

pT−1

1−pT−1

)
and yt ≡ ln

(
pt

1−pt

)
+
∑T−1
τ=t+1 β

τ−t∆η̄τt ;

∆η̄τt ≡ ∆E(ητ |xt , zt), ητ ≡ pτ ln(pτ ) + (1− pτ ) ln(1− pτ ) for τ > t.

Key: ∆x̄τ1,t , ∆x̄τt and ∆η̄τt are conditional mean differences of hτ
involving future CCP (τ > t).
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Identification & Estimation Estimation

A Mild New Assumption

Assumption 6 (Sample-terminal-period integrated value function)

Suppose there exist are K known functions of (x , z), denoted by
qK (x , z) ≡ (qK ,1(x , z), . . . , qK ,K (x , z))′, and a K × 1 unknown vector of
parameters γK , such that V̄T (xT , zT ) = qK (xT , zT )′γK .

If T = Tend and known, then qK (xT , zT ) = (x ′T , pT x
′
T∆T − ηT )′.

Let T ∗ = T , eq. (3) further becomes a linear system:

yT−1 = x ′T−1∆T−1 + β∆q̄KT−1γ
K , and (4a)

yt = x ′t∆t +
T−1∑
τ=t+1

βτ−t∆x̄τ ′t δ0,τ +
T−1∑
τ=t+1

βτ−t∆x̄τ ′1,t∆τ

+ βT−t∆q̄Kt γ
K , for t = 1, . . . ,T − 2, (4b)

where ∆q̄Kt ≡ ∆E(qK (xT , zT )|xt , zt). rank condition
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Identification & Estimation Estimation

3-Step CCP-Based Semiparametric Estimator

1 CCP: use data {ai ,t , si ,t}Ni=1 to obtain CCP estimates p̂i ,t .

2 Conditional mean differences: obtain ĥi ,τ by substituting unknown

pi ,τ with p̂i ,τ , then use data {ĥi ,τ , ai ,t , si ,t}Ni=1 to obtain the
conditional mean difference estimates of ∆η̄, ∆x̄ and ∆q̄K .

3 Parameter of interest: let m̄N(δ, γK ) ≡ 1
N

∑N
i=1 m(ai , si , δ, γ

K , p̂,

∆̂η̄, ∆̂x̄ , ∆̂q̄K ) capture the distance between LHS & RHS of eq. (4),
and obtain closed-form solution to:

(δ̂′, γ̂K ′)′ ≡ arg min
δ∈R(2T−3)dx ,γK∈RK

m̄N(δ, γK )′WNm̄N(δ, γK ).

asymptotic distribution

Chou, Ridder and Shi (2025) Nonstationary Dynamic Discrete Choice UC Berkeley 5/1/2025 14/ 19



Identification & Estimation Simulation

Simulation Setup

Fix a context: a car dealership chooses whether to begin offering EV
over a three-year horizon.

x1t & x2t : dealership’s readiness (service equipment, training, etc.);
w1t & w2t : dealership’s latent internal investment, determine x1t & x2t ;
zt : public sentiment.

T = Tend = 3, but researcher may or may not know this fact.

Researcher observes at and st = (x1t , x2t , zt)
′.

(w1t ,w2t , zt) follows choice-specific VAR(1). VAR(1) details

Flow utility function is

ut(a, xt) = δa,t,0 + δa,t,1xt,1 + δa,t,2xt,2.

Time-invariant (unknown to researcher) parameters of interest:

(δ0,t,0, δ0,t,1, δ0,t,2) = (0,−0.5,−0.3);
(δ1,t,0, δ1,t,1, δ1,t,2) = (−0.5, 0.1, 0.1).
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Identification & Estimation Simulation

Results: T = Tend = 3 Known (N = 250, R = 1000)
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Identification & Estimation Simulation

Results: T = Tend Unknown (N = 250, R = 1000)
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Identification & Estimation Identification of the Linear System

Rank Condition

Identification of (δ, γK ): rank condition of the linear system .

A sufficient condition: (x ′t ,∆x̄ t+1′
t )′ not perfectly linearly correlated

(recall ∆x̄ t+1
t ≡ ∆E(xt+1|xt , zt)).

More discussion in paper:

Excluded variable zt is auxiliary: not required, but useful in breaking
perfect linear correlation between xt and ∆x̄ t+1

t . details

Triangularity helps deal with time-invariant variables in xt . details

Unknown discount factor easily accommodated.
Stationary model is a special case.
When interpreting Assumption 6 as an approximation, bias can be
quantified. details

Over-identification reduces reliance on Assumption 6. details
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Conclusion

Conclusion & Future Research

More simulations & counterfactuals.

Unobserved heterogeneity (Chou, Liu & Shi, 2025).

Identification of δ in partially linear system (K →∞).

Complement other estimators with Markovian property.

Thank you!
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Backup Slides

Proof of Theorem 1

1 Ωt+1 ⊥⊥ Ωt−j |Ωt for Ωt = (s ′t , ε
′
t)
′, because by Assumption 1,

f (Ωt+1|Ωt , Ωt−j) =
∑

at=0,1

f (Ωt+1|at , Ωt , Ωt−j)Pr .(at |Ωt , Ωt−j)

=
∑

at=0,1

f (Ωt+1|at , Ωt)Pr .(at |Ωt)

= f (Ωt+1|Ωt),

so f (st+1, st−j |st , εt) = f (st+1|st , εt)f (st−j |st , εt).
2 Assumptions 1 & 2(i)-(iii) imply εt ⊥⊥ (st−j , at−j)|st implying

f (st+1, st−j |st , εt) = f (st+1|st , εt)f (st−j |st).
3 Integrate both sides w.r.t. F (εt |st),

f (st+1, st−j |st) = f (st+1|st)f (st−j |st).

Back to Theorem 1
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Backup Slides

Asymptotic Distribution

Proposition 1 (Asymptotic distribution of δ̂)
√
N
(
δ̂ − δ

)
d .−→ N (0,V ),

where V ≡ E[ψδ(ai , si )ψ
′
δ(ai , xi )] and ψδ(a, s) is the influence function of

δ̂, given in the paper.

Proposition 2 (Consistent estimator of V )

V̂
p.−→ V for the V̂ given in the paper.

back to estimator
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Backup Slides

Simulation Setup Details

(w1t ,w2t , zt)
′ follows time-invariant choice-specific VAR(1):

(wt,1,wt,2, zt)
′ = c + A(wt−1,1,wt−1,2, zt−1)′ + ιt ,

where

c ′ =

 2
1
0

 and A =

 0.7 0.2 0.5atzt
0.2 0.6 0.5atz

2
t

0 0 0.5

 .
Latent investment & public sentiment determine readiness:

x1t = w1t + zt ,

x2t = w2t +
(
z2
t − E(z2

t )
)
.

back to simulation setup
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Backup Slides

Function of the Excluded Variable(s) zt

Takeaway 1: rank condition holds if: (a) xt affects mean of xt+1 in
different ways at = 1 vs. at = 0; and (b) this difference is nonlinear in
xt (recall ∆E(xt+1|xt) ≡ E(xt+1|xt , at = 1)− E(xt+1|xt , at = 0)).

Takeaway 2: rank condition holds if: (a) zt affects mean of xt+1 in
different ways at = 1 vs. at = 0; and (b) this difference is nonlinear in
xt . (dz not important.)

Least favorable case: ∆E(xt+1|xt , zt) contains an additive component
that is linear in xt (denoted as ρ1xt).
If there exist `(·) ≡ (`1(·), . . . , `dx (·)) and ρ2 such that[

xt
∆E(xt+1|xt , zt)

]
︸ ︷︷ ︸

2dx×1

=

[
Idx 0dx×dz
ρ1 ρ2

]
︸ ︷︷ ︸

2dx×2dx

[
xt
`(zt)

]
︸ ︷︷ ︸

2dx×1

.

Rank condition holds if: (a) (x ′t , `(zt)
′)′ has invertible second moment

matrix; and (b) ρ2 has full rank (dx). back to rank condition
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Backup Slides

Identification with Time-invariant Variables in xt

Takeaway: corresponding coordinate in δ0,t is unidentified, but ∆t is,
and the counterfactual∗ is unaffected.
Suppose ∆T−1 and γK are identified.
Suppose xt,1 is time-invariant, so ∆x̄τ1,t = 0 for τ > t.
Consider eq. (4b) for t = T − 2 and t = T − 3:

yT−2 − β∆x̄T−1′
1,T−2∆T−1 − β2∆q̄K ′T−2γ

K

= x ′T−2∆T−2 + β∆x̄T−1′
T−2︸ ︷︷ ︸
=0

δ0,T−1,

yT−3 − β∆x̄T−2′
1,T−3∆T−2 − β2∆x̄T−1′

1,T−3∆T−1 − β2∆x̄T−1′
T−3︸ ︷︷ ︸
=0

δ0,T−1 − β3∆q̄K ′T−3γ
K

= x ′T−3∆T−3 + β∆x̄T−2′
T−3︸ ︷︷ ︸
=0

δ0,T−2.

Continually & intermittently time-varying xt both work.
back to rank condition
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Backup Slides

Bias Induced by Assumption 6

Assumption 6 can be interpreted as using a series basis functions
qK (xT , zT ) to approximate the expected value function V̄T (xT , zT ).

Define the approximation error

rK (xT , zT ) ≡ V̄T (xT , zT )− qK (xT , zT )′γK ,

and let ∆r̄Kt ≡ ∆E(rK (xT , zT )|xt , zt) for t = 1, . . . ,T − 1.

Assume V̄T (xT , zT ) is m times continuously differentiable, then the
approximation error using power series has the order

E[(∆r̄Kt )2] = O
(
K−

2m
ds

)
. This leads to:

Theorem 3 (Asymptotic bias bound of δ̂, power series)

‖δKpseudo − δ‖ = O
(
K−

m
ds

)
. back to rank condition
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Backup Slides

Over-identification May Reduce Reliance on Assumption 6

If T is large, recall eq. (3b) for t = 1:

y1 = x ′1∆1 +
T−1∑
τ=2

βτ−1∆x̄τ ′1 δ0,τ +
T−1∑
τ=2

βτ−1∆x̄τ ′1,1∆τ

+
((((

((((
((((

βT−1∆E(V̄T (xT , zT )|s1),

which contains all parameters of interest.

Also true for eq. (3b) for t = 2, which contains most parameters of
interest.

So, using eq. (3b) for the first few periods reduces reliance on
Assumption 6.

Similar to the truncation employed by the HMSS estimators.
back to rank condition
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