Identification and Estimation of Nonstationary Dynamic Discrete Choice Models

Cheng Chou	Geert Ridder	Ruoyao Shi
Independent	USC	UC Riverside

UC Berkeley May 1, 2025

Motivation

- Structural DDC models can be very useful:
 - Inter-temporal preference of forward-looking agents.
 - Counterfactual analysis.
 - Examples: labor force participation, demand for durable goods, etc.

• Estimation:

- Full solution estimators (MLE).
- CCP-based estimators (simulated GMM, pseudo-MLE).
- Finite dependence (GMM).

All require estimation of state transition distribution as input, some even need simulation (HMSS, 1994) or iteration (Aguirregabiria & Mira, 2002), to evaluate the objective function.

• **Practical motivation**: a novel & simple estimator of flow utility parameters that completely bypasses state transition.

Preview of Results

- We articulate a **Markovian** property for observed state variables under coomon assumptions in DDC literature.
- It eliminates the need of dealing with the state transitions.
- Represent the optimal decision rule as a simple **linear** system under mild additional assumptions.
- **Identification** conditions for flow utility parameters can be easily discussed.
- Develop a CCP-based semiparametric **estimator** that is much simpler and faster than alternatives (\approx 1000 times faster than HMSS in MC).

Relation to Literature

- Estimation: Rust (1987, NFP), Hotz & Miller (1993), Hotz, Miller, Sanders & Smith (1994, HMSS), Aguirregabiria & Mira (2002, NPL), Pesendorfer & Schmidt-Dengler (2008, GMM), Aguirregabiria & Magesan (2013, Euler), Arcidiacono & Miller (2019, FDP), Kalouptsidi, Scott & Souza-Rodrigues (2021), Chiong, Galichon & Shum (2016, duality), Srisuma & Linton (2012, FIE), Buchholz, Shum & Xu (2021, FIE); Adusumilli & Eckardt (2019).
- Identification: Rust (1987, 1994), Magnac & Thesmar (2002), Hotz & Miller (1993), Arcidiacono & Miller (2011), Bajari, Chu, Nekipelov & Park (2016), Arcidiacono & Miller (2020), Abbring & Daljord (2020).
- Counterfactual: Aguirregabiria (2010), Arcidiacono & Miller (2020), Kalouptsidi et al. (2021); unobserved heterogeneity: Kasahara & Shimotsu (2009), Arcidiacono & Miller (2011), Hu & Shum (2012), Higgins & Jochmans (2023); partial identification: Norets & Tang (2014), Berry & Compiani (2023), Kalouptsidi, Kitamura et al.

Chou, Ridder and Shi (2025)

Nonstationary Dynamic Binary Choice Model

- Decision horizon: $T \equiv \{T_{start}, \dots, T_{end}\}.$
- In each period $t \in \mathcal{T}$, flow utility is $u(a_t, s_t; \delta_t) + \varepsilon_{a_t t}$, where
 - $a_t \in \{0,1\}$: a binary choice;
 - *s_t*: observed state variables;
 - $\varepsilon_t \equiv (\varepsilon_{1t}, \varepsilon_{0t})'$ utility shocks; let $\Omega_t = (s'_t, \varepsilon'_t)'$.
- Each agent chooses a_t to maximize expected lifetime payoff:

$$\mathbb{E}\left(\sum_{j=0}^{T_{end}-t}\beta^{j}(u(a_{t+j},x_{t+j};\delta_{t+j})+\varepsilon_{a_{t+j}t+j})\Big|s_{t},\varepsilon_{t},a_{t}\right).$$

- Model primitives:
 - flow utility parameters: δ_t for all $t \in \mathcal{T}$;
 - state transition distributions: $f_{t+1}(s_{t+1}, \varepsilon_{t+1} | s_t, \varepsilon_t, a_t)$;
 - shock distributions: $F_t(\varepsilon_t)$.
- Nonstationarity: δ_t or f_t time-varying; T_{end} finite.

Model Setup

We Maintain These Common Assumptions

Assumption 1 (Controlled Markov process)

Assume $(s_{t+1}, \varepsilon_{t+1}) \perp (s_{t-j}, \varepsilon_{t-j}, a_{t-j}) \mid (s_t, \varepsilon_t, a_t)$ for $j \in \mathbb{N}^+$.

Assumption 2 (Flow utility shocks)

Assume (i) $\varepsilon_t \perp s_t$; (ii) $\varepsilon_t \perp s_{t-1}$; (iii) $\varepsilon_t \perp \varepsilon_{t'}$ for $t \neq t'$; (iv) $\varepsilon_{0t} \perp \varepsilon_{1t}$.

Assumption 3 (Conditional independence)

Assume $s_{t+1} \perp \varepsilon_t \mid (s_t, a_t)$.

 \bullet A subset of AM (2010) assumptions; sufficient for $\ensuremath{\mbox{Markovian}}$ below.

• Common "conditional independence" assumption in literature:

$$f(s_{t+1}, \varepsilon_{t+1}|s_t, \varepsilon_t, a_t) = f(\varepsilon_{t+1}|s_{t+1}, s_t, \varepsilon_t, a_t) \cdot f(s_{t+1}|s_t, \varepsilon_t, a_t)$$
$$= f(\varepsilon_{t+1}) \cdot f(s_{t+1}|s_t, a_t)$$

Some Standard Preliminary Results (HM 1993, AM 2011)

• Conditional choice probability (CCP):

$$p_t(s) \equiv Pr.(a_t = 1 | s_t = s) = \int a_t^o(s_t, \varepsilon_t) dF_t(\varepsilon_t).$$

• Choice-specific conditional value function $v_{at}(s_t)$ and integrated value function $\bar{V}_t(\cdot)$ have the relation $(a \in \{0, 1\})$:

$$v_{at}(s_t) \equiv u_t(a,s_t) + \beta \mathbb{E}(\bar{V}_{t+1}(s_{t+1})|s_t,a_t=a).$$

 For each a ∈ {0,1}, there exists a function ψ_a of CCP only, whose functional form is known given F_t(ε_t), such that

$$\psi_a(p_t) = \overline{V}_t(s_t) - v_{at}(s_t);$$

intuitively, it adjusts for the fact that choice a might not be optimal.

Model Setup

Some Standard Preliminary Results (cont'd)

• Our approach starts with an implication of these results:

$$\psi_{0}(p_{t}) - \psi_{1}(p_{t}) = \underbrace{u(1, s_{t}; \delta_{t}) - u(0, s_{t}; \delta_{t})}_{\text{static logit}} + \underbrace{\beta \Delta \mathbb{E} \left(\overline{V}_{t+1}(s_{t+1}) \mid s_{t} \right)}_{\text{main difficulty in dynamic models}}$$

where $\Delta \mathbb{E}(h_{\tau}|s_t) \equiv \mathbb{E}(h_{\tau}|s_t, a_t = 1) - \mathbb{E}(h_{\tau}|s_t, a_t = 0)$ for $\tau > t$.

• Repeatedly plug in the Bellman's equation (U_t^o is optimal flow utility):

$$ar{V}_t(s_t) = U^o_t(s_t) + eta \mathbb{E}(ar{V}_{t+1}(s_{t+1})|s_t).$$

 \bullet Stop in some period $\mathit{T}^* \leq \mathit{T_{end}}$, we get

$$\psi_{0}(p_{t}) - \psi_{1}(p_{t}) = u(1, x_{t}; \delta_{t}) - u(0, x_{t}; \delta_{t}) + \sum_{\tau=t+1}^{T^{*}-1} \beta^{\tau-t} \Delta \mathbb{E}(\mathbb{E}(\cdots \mathbb{E}(\frac{U_{\tau}^{o}}{(s_{\tau})|s_{\tau-1}}) \cdots |s_{t+1}||s_{t})) + \beta^{T^{*}-t} \Delta \mathbb{E}(\mathbb{E}(\cdots \mathbb{E}(\mathbb{E}(\frac{\bar{V}_{T^{*}}(s_{T^{*}})|s_{T^{*}-1}})|s_{T^{*}-2}) \cdots |s_{t+1}||s_{t})).$$
(1)

Markovian Property

Theorem 1 (Markovian s_t)

Under Assumptions 1 & 2(i)-(iii), s_t is a first order Markov process; that is, $s_{t+1} \perp s_{t-j} \mid s_t$ for $j \in \mathbb{N}^+$.

- Proof only uses elementary probability theory. proof
- Not implied by Assumption 1 alone, or vice versa. assumptions
- This is the key to our approach, not exploited in literature.

Lemma 2 (Conditional independence)

Under Assumptions 1 & 2(i)-(iii), for $j \in \mathbb{N}^+$ and measurable function $g(\cdot)$,

$$\mathbb{E}(\mathbb{E}(\underline{g}(s_{t+j}) \mid \underline{s}_{t+1}) \mid \underline{s}_t, a_t) = \mathbb{E}(\underline{g}(s_{t+j}) \mid \underline{s}_t, a_t).$$

Markovian Property (cont'd)

Theorem 2 (Telescoping)

Under Assumptions 1-3, eq. (1) simplifies to

$$\psi_{0}(p_{t}) - \psi_{1}(p_{t}) = u(1, x_{t}; \delta_{t}) - u(0, x_{t}; \delta_{t})$$

$$+ \sum_{\tau=t+1}^{T^{*}-1} \beta^{\tau-t} \Delta \mathbb{E}(\mathbb{E}(\cdots \mathbb{E}(\mathbb{E}(U_{\tau}^{o}(s_{\tau}) \mid \underline{s_{\tau-1}}) \mid \underline{s_{\tau-2}}) \cdots \mid \underline{s_{t+1}}) \mid s_{t})$$

$$+ \beta^{T^{*}-t} \Delta \mathbb{E}(\mathbb{E}(\cdots \mathbb{E}(\mathbb{E}(\overline{V}_{T^{*}}(s_{T^{*}}) \mid \underline{s_{\tau-1}}) \mid \underline{s_{\tau-2}}) \cdots \mid \underline{s_{t+1}}) \mid s_{t})$$

$$= u(1, x_{t}; \delta_{t}) - u(0, x_{t}; \delta_{t})$$

$$+ \sum_{\tau=t+1}^{T^{*}-1} \beta^{\tau-t} \Delta \mathbb{E}(U_{\tau}^{o}(s_{\tau}) \mid s_{t}) + \beta^{T^{*}-t} \Delta \mathbb{E}(\overline{V}_{T^{*}}(s_{T^{*}}) \mid s_{t}).$$
(2)

Mild Common Assumptions

Assumption 4 (Logit)

 ε_{0t} and ε_{1t} both follow a type I extreme value distribution.

• Implies: $\psi_0(p_t) - \psi_1(p_t) = \ln(p_t/(1-p_t)).$

Assumption 5 (Linear flow utility)

For each $t \in \mathcal{T}$, suppose $u(0, x_t; \delta_t) = x'_t \delta_{0,t}$ and $u(1, x_t; \delta_t) = x'_t \delta_{1,t}$ for some $\delta_{0,t}$ and $\delta_{1,t}$. We normalize $\delta_{0,1} = c_{d_x \times 1}$.

- Weaker than what's common in DDC literature.
- $s_t = (x'_t, z'_t)'$, where z_t (can be empty) is "excluded variables". • Implies:

$$U_t^o(s_t) = p_t x_t' \delta_{1,t} + (1-p_t) x_t' \delta_{0,t} + \gamma - p_t \ln(p_t) - (1-p_t) \ln(1-p_t).$$

Estimation

Mild Common Assumptions (cont'd)

• Under Assumptions 1-5, eq. (2) becomes a partially linear system:

$$y_{T^*-1} = x'_{T^*-1} \Delta_{T^*-1} + \beta \Delta \mathbb{E}(\bar{V}_{T^*}(x_{T^*}, z_{T^*})|s_{T^*-1}), \text{ and } (3a)$$

$$y_t = x'_t \Delta_t + \sum_{\tau=t+1}^{T^*-1} \beta^{\tau-t} \Delta \bar{x}_t^{\tau'} \delta_{0,\tau} + \sum_{\tau=t+1}^{T^*-1} \beta^{\tau-t} \Delta \bar{x}_{1,t}^{\tau'} \Delta_{\tau}$$

$$+ \beta^{T^*-t} \Delta \mathbb{E}(\bar{V}_{T^*}(s_{T^*})|s_t), \text{ for } t = 1, \dots, T-2, \quad (3b)$$

where

• We let
$$\Delta_t \equiv \delta_{1,t} - \delta_{0,t}$$
.
• $\Delta \bar{x}_{1,t}^{\tau} \equiv \Delta \mathbb{E}(p_{\tau} x_{\tau} | x_t, z_t)$ and $\Delta \bar{x}_t^{\tau} \equiv \Delta \mathbb{E}(x_{\tau} | x_t, z_t)$;
• $y_{\tau-1} \equiv \ln\left(\frac{p_{\tau-1}}{1-p_{\tau-1}}\right)$ and $y_t \equiv \ln\left(\frac{p_t}{1-p_t}\right) + \sum_{\tau=t+1}^{\tau-1} \beta^{\tau-t} \Delta \bar{\eta}_t^{\tau}$;
• $\Delta \bar{\eta}_t^{\tau} \equiv \Delta \mathbb{E}(\eta_{\tau} | x_t, z_t), \ \eta_{\tau} \equiv p_{\tau} \ln(p_{\tau}) + (1-p_{\tau}) \ln(1-p_{\tau}) \text{ for } \tau > t$.
ev: $\Delta \bar{x}_{1,t}^{\tau}, \ \Delta \bar{x}_t^{\tau}$ and $\Delta \bar{\eta}_t^{\tau}$ are conditional mean differences of h_{τ}

• Key: $\Delta \bar{x}_{1,t}^{\tau}$, $\Delta \bar{x}_t^{\tau}$ and $\Delta \bar{\eta}_t^{\tau}$ are conditional mean differences of h_{τ} involving future CCP ($\tau > t$).

Estimation

A Mild New Assumption

Assumption 6 (Sample-terminal-period integrated value function)

Suppose there exist are K known functions of (x, z), denoted by $q^{K}(x, z) \equiv (q^{K,1}(x, z), \dots, q^{K,K}(x, z))'$, and a $K \times 1$ unknown vector of parameters γ^{K} , such that $\overline{V}_{T}(x_{T}, z_{T}) = q^{K}(x_{T}, z_{T})'\gamma^{K}$.

If T = T_{end} and known, then q^K(x_T, z_T) = (x'_T, p_Tx'_TΔ_T − η_T)'.
Let T* = T, eq. (3) further becomes a linear system:

$$y_{T-1} = x'_{T-1} \Delta_{T-1} + \beta \Delta \bar{q}_{T-1}^{K} \gamma^{K}, \text{ and}$$

$$y_{t} = x'_{t} \Delta_{t} + \sum_{\tau=t+1}^{T-1} \beta^{\tau-t} \Delta \bar{x}_{t}^{\tau'} \delta_{0,\tau} + \sum_{\tau=t+1}^{T-1} \beta^{\tau-t} \Delta \bar{x}_{1,t}^{\tau'} \Delta_{\tau}$$

$$+ \beta^{T-t} \Delta \bar{q}_{t}^{K} \gamma^{K}, \text{ for } t = 1, \dots, T-2,$$
(4b)

where $\Delta ar{q}_t^{\mathcal{K}} \equiv \Delta \mathbb{E}(q^{\mathcal{K}}(x_{\mathcal{T}},z_{\mathcal{T}})|x_t,z_t).$ (rank condition

Estimation

3-Step CCP-Based Semiparametric Estimator

- CCP: use data $\{a_{i,t}, s_{i,t}\}_{i=1}^{N}$ to obtain CCP estimates $\hat{p}_{i,t}$.
- **Orditional mean differences:** obtain $\hat{h}_{i,\tau}$ by substituting unknown $p_{i,\tau}$ with $\hat{p}_{i,\tau}$, then use data $\{\hat{h}_{i,\tau}, a_{i,t}, s_{i,t}\}_{i=1}^{N}$ to obtain the conditional mean difference estimates of $\Delta \bar{\eta}$, $\Delta \bar{x}$ and $\Delta \bar{q}^{K}$.
- **3** Parameter of interest: let $\bar{m}_N(\delta, \gamma^K) \equiv \frac{1}{N} \sum_{i=1}^N m(a_i, s_i, \delta, \gamma^K, \hat{p}, \widehat{\Delta \eta}, \widehat{\Delta x}, \widehat{\Delta q^K})$ capture the distance between LHS & RHS of eq. (4), and obtain closed-form solution to:

$$(\hat{\delta}',\hat{\gamma}^{K'})' \equiv \arg\min_{\delta \in \mathbb{R}^{(2^{\tau}-3)d_{x}}, \gamma_{K} \in \mathbb{R}^{K}} \bar{m}_{N}(\delta,\gamma^{K})' W_{N} \bar{m}_{N}(\delta,\gamma^{K}).$$

asymptotic distribution

Simulation Setup

- Fix a context: a car dealership chooses whether to begin offering EV over a three-year horizon.
 - x_{1t} & x_{2t}: dealership's readiness (service equipment, training, etc.);
 - $w_{1t} \& w_{2t}$: dealership's latent internal investment, determine $x_{1t} \& x_{2t}$;
 - *z_t*: public sentiment.
- $T = T_{end} = 3$, but researcher may or may not know this fact.
- Researcher observes a_t and $s_t = (x_{1t}, x_{2t}, z_t)'$.
- (w_{1t}, w_{2t}, z_t) follows choice-specific VAR(1). VAR(1) details
- Flow utility function is

$$u_t(a, x_t) = \delta_{a,t,0} + \delta_{a,t,1} x_{t,1} + \delta_{a,t,2} x_{t,2}.$$

• Time-invariant (unknown to researcher) parameters of interest:

•
$$(\delta_{0,t,0}, \delta_{0,t,1}, \delta_{0,t,2}) = (\underline{0}, \underline{-0.5}, \underline{-0.3});$$

• $(\delta_{1,t,0}, \delta_{2,t,1}, \delta_{2,t,2}) = (\underline{-0.5}, 0, 1, 0, 1);$

Results: $T = T_{end} = 3$ Known (N = 250, R = 1000)

			CRS estimator			HMSS	HMSS estimator (NP)			HMSS estimator (P)		
	$\delta_{a,t,k}$	Truth	Abs Bias	Std Dev	MSE	Abs Bias	Std Dev	MSE	Abs Bias	Std Dev	MSE	
<i>t</i> = 1	$\delta_{1,1,0}$	-0.5	0.081	0.261	0.075	0.047	0.269	0.075	0.116	0.255	0.078	
	$\delta_{1,1,1}$	0.1	0.003	0.045	0.002	0.028	0.044	0.003	0.029	0.047	0.003	
	$\delta_{1,1,2}$	0.1	0.004	0.038	0.001	0.043	0.042	0.004	0.064	0.043	0.006	
<i>t</i> = 2	$\delta_{0,2,1}$	-0.5	0.042	0.287	0.084	0.261	0.174	0.098	0.128	0.191	0.053	
	$\delta_{0,2,2}$	-0.3	0.030	0.142	0.021	0.141	0.120	0.034	0.287	0.142	0.103	
	$\delta_{1,2,0}$	-0.5	0.037	0.165	0.029	0.029	0.199	0.040	0.065	0.193	0.041	
	$\delta_{1,2,1}$	0.1	0.005	0.042	0.002	0.012	0.042	0.002	0.009	0.047	0.002	
	$\delta_{1,2,2}$	0.1	0.013	0.040	0.002	0.018	0.039	0.002	0.020	0.045	0.002	
<i>t</i> = 3	$\delta_{0,3,2}$	-0.5	0.071	0.213	0.050	0.303	0.115	0.105	0.111	0.175	0.043	
	$\delta_{0,3,3}$	-0.3	0.076	0.125	0.021	0.201	0.088	0.048	0.171	0.117	0.043	
	$\delta_{1,3,1}$	-0.5	0.009	0.125	0.016	0.009	0.191	0.037	0.011	0.186	0.035	
	$\delta_{1,3,2}$	0.1	0.001	0.034	0.001	0.000	0.045	0.002	0.004	0.045	0.002	
	$\delta_{1,3,3}$	0.1	0.009	0.035	0.001	0.004	0.046	0.002	0.005	0.048	0.002	

Results: $T = T_{end}$ Unknown (N = 250, R = 1000)

			CRS estimator			HMSS	HMSS estimator (NP)			HMSS estimator (P)		
	$\delta_{a,t,k}$	Truth	Abs Bias	Std Dev	MSE	Abs Bias	Std Dev	MSE	Abs Bias	Std Dev	MSE	
<i>t</i> = 1	$\delta_{1,1,0}$	-0.5	0.031	0.311	0.098	0.049	0.273	0.077	0.112	0.274	0.088	
	$\delta_{1,1,1}$	0.1	0.004	0.053	0.003	0.028	0.045	0.003	0.030	0.051	0.004	
	$\delta_{1,1,2}$	0.1	0.008	0.048	0.002	0.045	0.042	0.004	0.074	0.045	0.008	
<i>t</i> = 2	$\delta_{0,2,1}$	-0.5	0.090	0.301	0.099	0.196	0.168	0.067	0.050	0.162	0.029	
	$\delta_{0,2,2}$	-0.3	0.044	0.167	0.030	0.120	0.117	0.028	0.267	0.144	0.092	
	$\delta_{1,2,0}$	-0.5	0.012	0.215	0.046	0.062	0.185	0.038	0.068	0.179	0.037	
	$\delta_{1,2,1}$	0.1	0.010	0.053	0.003	0.019	0.037	0.002	0.013	0.035	0.001	
	$\delta_{1,2,2}$	0.1	0.002	0.053	0.003	0.022	0.035	0.002	0.024	0.035	0.002	
	$\delta_{0,3,2}$	-0.5	-	-	-	0.438	0.033	0.193	0.429	0.032	0.185	
<i>t</i> = 3	$\delta_{0,3,3}$	-0.3	_	-	_	0.245	0.037	0.061	0.249	0.031	0.063	
	$\delta_{1,3,1}$	-0.5	-	-	-	0.053	0.184	0.037	0.034	0.181	0.034	
	$\delta_{1,3,2}$	0.1	-	-	-	0.008	0.044	0.002	0.010	0.043	0.002	
	$\delta_{1,3,3}$	0.1	-	_	-	0.000	0.045	0.002	0.001	0.046	0.002	

Rank Condition

- Identification of (δ, γ^{K}) : rank condition of the linear system.
- A sufficient condition: $(x'_t, \Delta \bar{x}^{t+1}_t)'$ not perfectly linearly correlated (recall $\Delta \bar{x}^{t+1}_t \equiv \Delta \mathbb{E}(x_{t+1}|x_t, z_t))$.
- More discussion in paper:
 - **Excluded variable** z_t is auxiliary: not required, but useful in breaking perfect linear correlation between x_t and $\Delta \bar{x}_t^{t+1}$. details
 - Triangularity helps deal with time-invariant variables in x_t . details
 - Unknown discount factor easily accommodated.
 - Stationary model is a special case.
 - When interpreting Assumption 6 as an approximation, bias can be quantified. details
 - Over-identification reduces reliance on Assumption 6. (details

Conclusion & Future Research

- More simulations & counterfactuals.
- Unobserved heterogeneity (Chou, Liu & Shi, 2025).
- Identification of δ in partially linear system ($K \to \infty$).
- Complement other estimators with Markovian property.

Thank you!

Proof of Theorem 1

• $\Omega_{t+1} \perp \Omega_{t-j} | \Omega_t$ for $\Omega_t = (s'_t, \varepsilon'_t)'$, because by Assumption 1, $f(\Omega_{t+1} | \Omega_t, \Omega_{t-j}) = \sum_{a_t=0,1} f(\Omega_{t+1} | a_t, \Omega_t, \Omega_{t-j}) Pr.(a_t | \Omega_t, \Omega_{t-j})$ $= \sum_{a_t=0,1} f(\Omega_{t+1} | a_t, \Omega_t) Pr.(a_t | \Omega_t)$ $= f(\Omega_{t+1} | \Omega_t),$

so $f(s_{t+1}, s_{t-j}|s_t, \varepsilon_t) = f(s_{t+1}|s_t, \varepsilon_t)f(s_{t-j}|s_t, \varepsilon_t)$. Sumptions 1 & 2(i)-(iii) imply $\varepsilon_t \perp (s_{t-j}, a_{t-j})|s_t$ implying

$$f(s_{t+1},s_{t-j}|s_t,\varepsilon_t)=f(s_{t+1}|s_t,\varepsilon_t)f(s_{t-j}|s_t).$$

• Integrate both sides w.r.t. $F(\varepsilon_t|s_t)$,

$$f(s_{t+1}, s_{t-j}|s_t) = f(s_{t+1}|s_t)f(s_{t-j}|s_t).$$

Back to Theorem 1

Asymptotic Distribution

Proposition 1 (Asymptotic distribution of $\hat{\delta}$)

$$\sqrt{N}\left(\hat{\delta}-\delta\right)\overset{d.}{\longrightarrow}\mathcal{N}(0,V),$$

where $V \equiv \mathbb{E}[\psi_{\delta}(a_i, s_i)\psi'_{\delta}(a_i, x_i)]$ and $\psi_{\delta}(a, s)$ is the influence function of $\hat{\delta}$, given in the paper.

Proposition 2 (Consistent estimator of V)

 $\widehat{V} \stackrel{p.}{\longrightarrow} V$ for the \widehat{V} given in the paper.

back to estimator

Chou, Ridder and Shi (2025)

Simulation Setup Details

• $(w_{1t}, w_{2t}, z_t)'$ follows time-invariant choice-specific VAR(1):

$$(w_{t,1}, w_{t,2}, z_t)' = c + A(w_{t-1,1}, w_{t-1,2}, z_{t-1})' + \iota_t,$$

where

$$c' = \begin{bmatrix} 2\\1\\0 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 0.7 & 0.2 & 0.5a_t z_t\\0.2 & 0.6 & 0.5a_t z_t^2\\0 & 0 & 0.5 \end{bmatrix}$$

• Latent investment & public sentiment determine readiness:

$$x_{1t} = w_{1t} + z_t,$$

$$x_{2t} = w_{2t} + (z_t^2 - \mathbb{E}(z_t^2)).$$

back to simulation setup

Chou, Ridder and Shi (2025)

.

Function of the Excluded Variable(s) z_t

- Takeaway 1: rank condition holds if: (a) x_t affects mean of x_{t+1} in different ways $a_t = 1$ vs. $a_t = 0$; and (b) this difference is nonlinear in x_t (recall $\Delta \mathbb{E}(x_{t+1}|x_t) \equiv \mathbb{E}(x_{t+1}|x_t, a_t = 1) \mathbb{E}(x_{t+1}|x_t, a_t = 0)$).
- **Takeaway 2**: rank condition holds if: (a) z_t affects mean of x_{t+1} in different ways $a_t = 1$ vs. $a_t = 0$; and (b) this difference is nonlinear in x_t . (d_z not important.)
 - Least favorable case: $\Delta \mathbb{E}(x_{t+1}|x_t, z_t)$ contains an additive component that is linear in x_t (denoted as $\rho_1 x_t$).
 - If there exist $\ell(\cdot) \equiv (\ell_1(\cdot), \dots, \ell_{d_x}(\cdot))$ and ho_2 such that

$$\underbrace{\left[\begin{array}{c} x_t \\ \Delta \mathbb{E}(x_{t+1}|x_t, z_t) \end{array}\right]}_{2d_x \times 1} = \underbrace{\left[\begin{array}{c} I_{d_x} & 0_{d_x \times d_z} \\ \rho_1 & \rho_2 \end{array}\right]}_{2d_x \times 2d_x} \underbrace{\left[\begin{array}{c} x_t \\ \ell(z_t) \end{array}\right]}_{2d_x \times 1}.$$

Rank condition holds if: (a) $(x'_t, \ell(z_t)')'$ has invertible second moment matrix; and (b) ρ_2 has full rank (d_x) . back to rank condition

Backup Slides

Identification with Time-invariant Variables in x_t

- **Takeaway**: corresponding coordinate in $\delta_{0,t}$ is unidentified, but Δ_t is, and the counterfactual^{*} is unaffected.
- Suppose Δ_{T-1} and γ^{K} are identified.
- Suppose $x_{t,1}$ is time-invariant, so $\Delta \bar{x}_{1,t}^{\tau} = 0$ for $\tau > t$.
- Consider eq. (4b) for t = T 2 and t = T 3:

$$y_{T-2} - \beta \Delta \bar{x}_{1,T-2}^{T-1'} \Delta_{T-1} - \beta^2 \Delta \bar{q}_{T-2}^{K'} \gamma^{K}$$

= $x'_{T-2} \Delta_{T-2} + \beta \underbrace{\Delta \bar{x}_{T-2}^{T-1'}}_{=0} \delta_{0,T-1},$
 $y_{T-3} - \beta \Delta \bar{x}_{1,T-3}^{T-2'} \Delta_{T-2} - \beta^2 \Delta \bar{x}_{1,T-3}^{T-1'} \Delta_{T-1} - \beta^2 \underbrace{\Delta \bar{x}_{T-3}^{T-1'}}_{=0} \delta_{0,T-1} - \beta^3 A_{T-1}$

$$= x'_{T-3}\Delta_{T-3} + \beta \underbrace{\Delta \bar{x}^{T-2'}_{T-3}}_{=0} \delta_{0,T-2}.$$

• Continually & intermittently time-varying x_t both work.

back to rank condition

Chou, Ridder and Shi (2025)

Nonstationary Dynamic Discrete Choice

Bias Induced by Assumption 6

- Assumption 6 can be interpreted as using a series basis functions $q^{K}(x_{T}, z_{T})$ to **approximate** the expected value function $\bar{V}_{T}(x_{T}, z_{T})$.
- Define the approximation error

$$r^{K}(x_{T},z_{T})\equiv \bar{V}_{T}(x_{T},z_{T})-q^{K}(x_{T},z_{T})'\gamma^{K},$$

and let $\Delta \bar{r}_t^K \equiv \Delta \mathbb{E}(r^K(x_T, z_T)|x_t, z_t)$ for $t = 1, \dots, T - 1$.

• Assume $\bar{V}_T(x_T, z_T)$ is *m* times continuously differentiable, then the approximation error using **power series** has the order $\mathbb{E}[(\Delta \bar{r}_t^K)^2] = O\left(K^{-\frac{2m}{d_s}}\right)$. This leads to:

Theorem 3 (Asymptotic bias bound of $\hat{\delta}$, power series)

$$\|\delta^{\mathcal{K}}_{ extsf{pseudo}} - \delta\| = O\left(\mathcal{K}^{-rac{m}{d_{s}}}
ight)$$
 . Dack to rank condition

Backup Slides

Over-identification May Reduce Reliance on Assumption 6

• If T is large, recall eq. (3b) for t = 1:

$$y_1 = x_1' \Delta_1 + \sum_{\tau=2}^{T-1} \beta^{\tau-1} \Delta \bar{x}_1^{\tau'} \delta_{0,\tau} + \sum_{\tau=2}^{T-1} \beta^{\tau-1} \Delta \bar{x}_{1,1}^{\tau'} \Delta_{\tau} + \beta^{T-1} \Delta \mathbb{E}(\overline{\mathcal{V}_T(x_T, z_T)}|s_1),$$

which contains all parameters of interest.

- Also true for eq. (3b) for t = 2, which contains most parameters of interest.
- So, using eq. (3b) for the first few periods reduces reliance on Assumption 6.
- Similar to the truncation employed by the HMSS estimators.