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Introduction

Motivation

@ Structural DDC models can be very useful:
o Inter-temporal preference of forward-looking agents.
o Counterfactual analysis.
e Examples: labor force participation, demand for durable goods, etc.
o Estimation:
o Full solution estimators (MLE).
o CCP-based estimators (simulated GMM, pseudo-MLE).
o Finite dependence (GMM).
All require estimation of state transition distribution as input, some
even need simulation (HMSS, 1994) or iteration (Aguirregabiria &
Mira, 2002), to evaluate the objective function.

o Practical motivation: a novel & simple estimator of flow utility
parameters that completely bypasses state transition.
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Introduction

Preview of Results

@ We articulate a Markovian property for observed state variables
under coomon assumptions in DDC literature.

o It eliminates the need of dealing with the state transitions.

@ Represent the optimal decision rule as a simple linear system under
mild additional assumptions.

o lIdentification conditions for flow utility parameters can be easily
discussed.

@ Develop a CCP-based semiparametric estimator that is much simpler
and faster than alternatives (=~ 1000 times faster than HMSS in MC).
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Introduction

Relation to Literature

e Estimation: Rust (1987, NFP), Hotz & Miller (1993), Hotz, Miller,
Sanders & Smith (1994, HMSS), Aguirregabiria & Mira (2002, NPL),
Pesendorfer & Schmidt-Dengler (2008, GMM), Aguirregabiria &
Magesan (2013, Euler), Arcidiacono & Miller (2019, FDP),
Kalouptsidi, Scott & Souza-Rodrigues (2021), Chiong, Galichon &
Shum (2016, duality), Srisuma & Linton (2012, FIE), Buchholz,
Shum & Xu (2021, FIE); Adusumilli & Eckardt (2019).

o ldentification: Rust (1987, 1994), Magnac & Thesmar (2002), Hotz
& Miller (1993), Arcidiacono & Miller (2011), Bajari, Chu, Nekipelov
& Park (2016), Arcidiacono & Miller (2020), Abbring & Daljord
(2020).

o Counterfactual: Aguirregabiria (2010), Arcidiacono & Miller (2020),
Kalouptsidi et al. (2021); unobserved heterogeneity: Kasahara &
Shimotsu (2009), Arcidiacono & Miller (2011), Hu & Shum (2012),
Higgins & Jochmans (2023); partial identification: Norets & Tang
(2014), Berry & Compiani (2023), Kalouptsidi, Kitamura et al.
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Model Setup & Markovian Property Model Setup

Nonstationary Dynamic Binary Choice Model

Decision horizon: T = {Tstart, - - -, Tend}-
In each period t € T, flow utility is u(a¢, st; 0¢) + £a,t, Where
o a; € {0,1}: a binary choice;
o s;: observed state variables;
o &1 = (e1¢,€0¢) utility shocks; let 2, = (s;, ;).

@ Each agent chooses a; to maximize expected lifetime payoff:

end t
E E 51 u(artj, Xeji Oegj) + Eat+jt+j) St Et, at

Model primitives:

o flow utility parameters: J; for all t € T,
o state transition distributions: fr11(St11, €r41]5t, €1, at);
o shock distributions: F;(e¢).

o Nonstationarity: d; or f; time-varying; Teng finite.
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Model Setup & Markovian Property Model Setup

We Maintain These Common Assumptions

Assumption 1 (Controlled Markov process)

Assume (se41,€¢41) AL (Se—j, €e—j, ar—j) | (st,€¢, ar) for j € NT.
Assumption 2 (Flow utility shocks)

Assume (i) ey AL sy, (i) er L sp—q; (iii) er AL ep fort # t'; (iv) eor LL e1t.
Assumption 3 (Conditional independence)

Assume sp1 AL er | (St, at).

@ A subset of AM (2010) assumptions; sufficient for below.
@ Common “conditional independence” assumption in literature:

f(5t+1’5t+1‘5t75t7 at) = f(5t+1’5t+17 Sty Et, at) : f(5t+1|5tu5t7 at)
= f(et+1) - F(se+1lst, ar)
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Model Setup & M an Property Model Setup

Some Standard Preliminary Results (HM 1993, AM 2011)

e Conditional choice probability (CCP):

pe(s) = Pr.(a; = 1l|sy = s) = /a‘t’(st,st)dFt(st).

° Choice—spiecific conditional value function v,¢(s;) and integrated value
function V4(-) have the relation (a € {0,1}):

Var(se) = ue(a, s¢) + BE(Ver1(ser1)|se, ar = a).

@ For each a € {0,1}, there exists a function 1, of CCP only, whose
functional form is known given F:(e;), such that

Ya(pe) = Vi(st) — vat(se);

intuitively, it adjusts for the fact that choice a might not be optimal.
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Model Setup & M an Property Model Setup

Some Standard Preliminary Results (cont'd)

@ Our approach starts with an implication of these results:
Yo(pe)—¥1(pe) = u(1, st 6:) — u(0, s 6:)+ BAE (Vt+1(5t+1) ‘ St)
Stati::r|0git main difficulty in dynamic models
where AE(h-|s¢) = E(h;|st, ar = 1) — E(h;|s¢, ar = 0) for 7 > t.
@ Repeatedly plug in the Bellman's equation (Uy is optimal flow utility):
Vi(st) = U7 (st) + BE(Vega(sesa)lst)-
@ Stop in some period T* < Tg,g, We get

Yo(pt) — Y1(pe) = u(l, xt; 8¢) — u(0, xt; J¢)
T 1

i Z BTEAR(E(: - - E(U2(sr)|sr—1) - - - |se1)|st)
T=t+1

+ BT TTAR(E(- - E(E(V7-(s7<)|s7=-1) |57+ -2) - - [sealse). - (1)
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Model Setup & Markovian Property Markovian Property

Markovian Property

Theorem 1 (Markovian s;)

Under Assumptions 1 & 2(i)-(iii), s; is a first order Markov process; that
is, Sp+1 AL | s¢ for j € NT.

@ Proof only uses elementary probability theory.
@ Not implied by Assumption 1 alone, or vice versa.

o This is the key to our approach, not exploited in literature.

Lemma 2 (Conditional independence)
Under Assumptions 1 & 2(i)-(iii), for j € N and measurable function g(-),

E(E(g(st+/) | st+1) | st, ar) = E(g(st+) | st, at)-
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Model Setup & Markovian Property Markovian Property

Markovian Property (cont'd)

Theorem 2 (Telescoping)

Under Assumptions 1-3, eq. (1) simplifies to

Yo(pt) — ¥1(pe) = u(l, xe; 0t) — u(0, x; It)

T+-1

+ Y BTIARGE( - F(E(UL(sr) | se—1) |se—2) -+ | ser) | st)
T=t+1

+ BT TTAR(E(: - - E(E(Vr(s7+) | ) | ) | seer) | St)

= u(1, x¢; 0¢) — u(0, x¢; d¢)

T*—1 )

£ FTAR(U(s) | )+ BT ARV (sr) | 5). (2)
Tr=taril
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Identification & Estimation Estimation

Mild Common Assumptions

Assumption 4 (Logit)

€ot and €1+ both follow a type | extreme value distribution.
o Implies: Yo(pr) — ¥1(pe) = In(pe/(1 — pr)).

Assumption 5 (Linear flow utility)

For each t € T, suppose u(0, x¢; 0t) = x;00,+ and u(1, x¢; 0¢) = x(d1,¢ for
some 0.+ and 01:. We normalize 6p,1 = cd, x1-

@ Weaker than what's common in DDC literature.

e s; = (x},z;)', where z; (can be empty) is “excluded variables”.
@ Implies:

U?(st) = pex;o1,e + (1 — pe)x;do,e +7 — pe In(pe) — (1 — pe) In(1 — py).

Chou, Ridder and Shi (2025) Nonstationary Dynamic Discrete Choice UC Berkeley 5/1/2025 11/ 19




Identification & Estimation Estimation

Mild Common Assumptions (cont’d)

@ Under Assumptions 1-5, eq. (2) becomes a partially linear system:

YTx_1 = XCI'*_lAT*fl + BAE(\_/T* (XT*,ZT*)
T -1 T*—1
ye=xiAc+ Y BTIAR b0, + Y BTTIARLA,
T=t+1 T=t+1
+ BT tAR(Vre(st+)|st), fort =1,..., T =2, (3b)

st_1), and  (3a)

where
o Welet Ay =61+ — do .
o AX], = AE(prxr|xt, zt) and AX] = AE(xr|xt, 2:);
o yr_1=1In (%) and ytEIn( )+ZT t+16T AT
o Al = AE(n;|xe, zt), nr = pr In(pT) (1= p;)In(l—p;) for 7 > t.
o Key: AX{,, AX{ and Af] are conditional mean differences of h;
involving future CCP (7 >1t).
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Identification & Estimation

Estimation

A Mild New Assumption

Assumption 6 (Sample-terminal-period integrated value function)

Suppose there exist are K known functions of (x,z), denoted by

a¥(x,2) = (¢ (x, 2), . .. ,_qK’K(x,z))’, and a K x 1 unknown vector of
parameters v, such that Vr(xt,z7) = q¥(x1,27) 7K.

o If T = T.ng and known, then g*(x7,z7) = (X, prX AT — 1)
o Let T =T, eq. (3) further becomes a linear system:

Y11= Xp_ (A7 1+ BAGE 4K, and

(4a)

T-1 T-1
Ve = X\A\; + Z BTTEART 50, + Z BTEART A
T=t+1 T=t+1

+ BT tAGEAK fort=1,..., T -2,

(4b)

where AGK = AE(qH (xr, 27)lxe, 2¢).
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Identification & Estimation Estimation

3-Step CCP-Based Semiparametric Estimator

@ CCP: use data {a,-,t,s,-,t},’-vzl to obtain CCP estimates p; ;.

@ Conditional mean differences: obtain /A7,-7T by substituting unknown
pir with p; -, then use data {h,-J,a,-’t,s,-,t},’-V:l to obtain the
conditional mean difference estimates of A7, AX and AG~K.

© Parameter of interest: let my(5,7X) = % fvzl m(a;, s, 6,75, p,

&,&,AGK) capture the distance between LHS & RHS of eq. (4),
and obtain closed-form solution to:

(&, 4% = argmin  mn(0,7%) Wymn(8,+5).
SERCT—3)dx e RK
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Identification & Estimation Simulation

Simulation Setup

o Fix a context: a car dealership chooses whether to begin offering EV
over a three-year horizon.

o x1: & xp;: dealership’s readiness (service equipment, training, etc.);
o wi; & wy:: dealership’s latent internal investment, determine xi;+ & xo¢;
e z;: public sentiment.

T = Tepgd = 3, but researcher may or may not know this fact.
Researcher observes a; and sy = (x1¢, xot, 2¢)'.
(wat, wot, z¢) follows choice-specific VAR(1).

Flow utility function is

ur(a, x¢) = 02,60 + 0at,1%e,1 + 0a,£,2Xe 2.

Time-invariant (unknown to researcher) parameters of interest:
e (d0,t,0,00,¢,1,00,,2) = (0, =0.5, =0.3);
o (01,¢0,01,6,1,01,.2) = (—0.5,0.1,0.1).
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Simulation

Results: T = To,g = 3 Known (N = 250, R = 1000)

CRS estimator HMSS estimator (NP) HMSS estimator (P)
bait,k Truth  Abs Bias Std Dev.  MSE Abs Bias Std Dev  MSE Abs Bias Std Dev.  MSE
6110 -0.5 0.081 0.261 0.075 0.047 0.269 0.075 0.116 0.255 0.078
t=1 4111 0.1 0.003 0.045 0.002 0.028 0.044 0.003 0.029 0.047 0.003
6112 0.1 0.004 0.038 0.001 0.043 0.042 0.004 0.064 0.043 0.006
do21 -0.5 0.042 0.287 0.084 0.261 0.174 0.098 0.128 0.191 0.053
do,22 —0.3 0.030 0.142 0.021 0.141 0.120 0.034 0.287 0.142 0.103
t=2 d120 -05 0.037 0.165 0.029 0.029 0.199 0.040 0.065 0.193 0.041
01,21 0.1 0.005 0.042 0.002 0.012 0.042 0.002 0.009 0.047 0.002
61,2,2 0.1 0.013 0.040 0.002 0.018 0.039 0.002 0.020 0.045 0.002
do,32 -0.5 0.071 0.213 0.050 0.303 0.115 0.105 0.111 0.175 0.043
do,33 —0.3 0.076 0.125 0.021 0.201 0.088 0.048 0.171 0.117 0.043
t=3 4131 -0.5 0.009 0.125 0.016 0.009 0.191 0.037 0.011 0.186 0.035
61,32 0.1 0.001 0.034 0.001 0.000 0.045 0.002 0.004 0.045 0.002
81,33 0.1 0.009 0.035 0.001 0.004 0.046 0.002 0.005 0.048 0.002
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Simulation

Results: T = Te,¢ Unknown (N = 250, R = 1000)

CRS estimator HMSS estimator (NP) HMSS estimator (P)
ba,t,k Truth  Abs Bias Std Dev ~ MSE Abs Bias  Std Dev ~ MSE Abs Bias  Std Dev  MSE
110 -0.5 0.031 0.311 0.098 0.049 0.273 0.077 0.112 0.274 0.088
t=1 6111 0.1 0.004 0.053 0.003 0.028 0.045 0.003 0.030 0.051 0.004
di12 0.1 0.008 0.048 0.002 0.045 0.042 0.004 0.074 0.045 0.008
do21 —0.5 0.090 0.301 0.099 0.196 0.168 0.067 0.050 0.162 0.029
0,22 —0.3 0.044 0.167 0.030 0.120 0.117 0.028 0.267 0.144 0.092
t=2 6120 -05 0.012 0.215 0.046 0.062 0.185 0.038 0.068 0.179 0.037
01,21 0.1 0.010 0.053 0.003 0.019 0.037 0.002 0.013 0.035 0.001
b1,2,2 0.1 0.002 0.053 0.003 0.022 0.035 0.002 0.024 0.035 0.002
do32 —0.5 = = = 0.438 0.033 0.193 0.429 0.032 0.185
do33 —0.3 = = = 0.245 0.037 0.061 0.249 0.031 0.063
t=3 6131 -05 = = = 0.053 0.184 0.037 0.034 0.181 0.034
81,32 0.1 - = = 0.008 0.044 0.002 0.010 0.043 0.002
01,33 0.1 = = = 0.000 0.045 0.002 0.001 0.046 0.002
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Identification & Estimation Identification of the Linear System

Rank Condition

o Identification of (4,7): rank condition of the

ct+1/

o A sufficient condition: (x;, Ax; ™)' not perfectly linearly correlated
(recall AXITY = AR(xeq1|xe, 2¢)).
@ More discussion in paper:

Chou, Ridder and Shi (2025) Nonstationary Dynamic Discrete Choice

Excluded variable z; is auxiliary: not required, but useful in breaking
perfect linear correlation between x; and Ax!*L.

Triangularity helps deal with time-invariant variables in x;.

Unknown discount factor easily accommodated.

Stationary model is a special case.

When interpreting Assumption 6 as an approximation, bias can be
quantified.

Over-identification reduces reliance on Assumption 6.




Conclusion

Conclusion & Future Research

More simulations & counterfactuals.
Unobserved heterogeneity (Chou, Liu & Shi, 2025).
Identification of § in partially linear system (K — o).

Complement other estimators with Markovian property.

Thank you!
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Backup Slides

Proof of Theorem 1
Q 241 AL 02|02 for 2, = (s;,€})’, because by Assumption 1,

F(2041|92¢, 920) = Z F(2er1]ae, 2¢, Qo) Pr.(ae|2¢, 2:—j)
3t=0,1

= Y F(Req1lar, 20)Pr.(ae] 2¢)
at:O,l

= F(Qe41]424),

SO f(5t+175t—j’5t>€t) = f(5t+1’5t75t)f(5t—j‘5t75t)-
@ Assumptions 1 & 2(i)-(iii) imply e; AL (s¢—j, ar—j)|s¢ implying

f(5t+175t—j’5t75t) = f(5t+1’5t7€t)f(5t—j|5t)-
@ Integrate both sides w.r.t. F(e¢|st),

f(St+1, Se—jlst) = F(se+1lse)f(se—jlst)-
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Asymptotic Distribution

Proposition 1 (Asymptotic distribution of &)
VN (3 _ 5) 4 N(0, V),

where V = E[5(aj, si)v5(ai, xi)] and ¥s(a, s) is the influence function of
5, given in the paper.

Proposition 2 (Consistent estimator of V)

V 25V for the V given in the paper.
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Simulation Setup Details

o (wie, way, z¢) follows time-invariant choice-specific VAR(1):

(We,1, we 2, z) =c+ A(We—1,1, We—1,2, ze-1) + e,

where
2 0.7 0.2 0.58tZt
=11 and A= 02 0.6 05a2z
0 0 0 05

@ Latent investment & public sentiment determine readiness:

X1t = Wit + Zt,

Xot = Wt + (th - E(th)) :
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Function of the Excluded Variable(s) z

e Takeaway 1: rank condition holds if: (a) x; affects mean of x;11 in
different ways a; = 1 vs. a; = 0; and (b) this difference is nonlinear in
x¢ (recall AE(xt11|xt) = E(xe41|xt, ar = 1) — E(x¢11|x¢, ar = 0)).

e Takeaway 2: rank condition holds if: (a) z; affects mean of x¢41 in
different ways a; = 1 vs. a; = 0; and (b) this difference is nonlinear in
x¢. (d; not important.)

o Least favorable case: AE(x;y1|xt, z:) contains an additive component

that is linear in x; (denoted as p1x;).
o If there exist £(-) = (£1(-), ..., %q.(-)) and py such that

Xt } _ [ la,  Og, xd, } { Xt ]
AE(XH-l |Xt> Zt) P1 P2 g(zt) '
——

2d, x1 2d, x2dy 2d, x1

Rank condition holds if: (a) (x},€(z:)")" has invertible second moment
matrix; and (b) p2 has full rank (dy).
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Identification with Time-invariant Variables in x;

o Takeaway: corresponding coordinate in dg ¢ is unidentified, but A; is,
and the counterfactual® is unaffected.

@ Suppose A7_1 and v are identified.

© Suppose x¢1 is time-invariant, so Ax{, =0 for 7 > t.

o Consider eq. (4b) fort =T —2andt=T —3:

Y- 2_/8AX1T 2AT 1_5 AqT 27

= Xy oA o+ BART 60T 1,

———
=0
cT—2 2AcT-1 2AcT-1 3
Yr-3 — ﬁAXLT_3AT—2 - AX17T_3AT—1 -3 AXT_3 5O,T—1 - B
———
=0
/ cT—-2
= x7_3A7_3+ BAX: 500,72
————
=0

o Continually & intermittently time-varying x; both work.
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Bias Induced by Assumption 6

@ Assumption 6 can be interpreted as using a series basis functions
q¥(x1, z7) to approximate the expected value function V1 (xT,z7).

@ Define the approximation error
M (xr,21) = Vr(xr, zr) — ¢ (xr, 21)' 7",

and let AFK = AE(rK(x7, z7)|x¢, 2) for t =1,..., T — 1.
@ Assume \_/T(XT,ZT) is m times continuously differentiable, then the
approximation error using power series has the order

E[(AFK)?] = O (KJT?). This leads to:

Theorem 3 (Asymptotic bias bound of 8, power series)

|8hcuao — 81l = O (K4 ).

pseudo
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Over-identification May Reduce Reliance on Assumption 6

o If T is large, recall eq. (3b) for t = 1:

T-1 T-1
yi=x01+ ) BTHAR o + ) BTTHARNA,
T=2 T=2

+87 1 Vr(xT, 27) Is1),

which contains all parameters of interest.

@ Also true for eq. (3b) for t = 2, which contains most parameters of
interest.

@ So, using eq. (3b) for the first few periods reduces reliance on
Assumption 6.

@ Similar to the truncation employed by the HMSS estimators.
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